Spaces:
Runtime error
Runtime error
File size: 9,733 Bytes
5542365 d4159c9 62e13ba 460f43a 6fa1106 d4e833e 20a3626 5542365 b0b9920 6fa1106 bcac695 931b52f 5542365 bcac695 f5dba1e 62e13ba 6fa1106 62e13ba 648305a bcac695 648305a b0b9920 648305a bdaeeba 648305a db5a22a 648305a db5a22a 648305a db5a22a 648305a db5a22a 5542365 bdaeeba 5542365 fb1fbca db5a22a 5542365 db5a22a 5542365 5f44d34 5542365 00ed1ab 753c4f0 648305a 753c4f0 5da4af0 5542365 e3b1b56 648305a e3b1b56 931b52f e3b1b56 5542365 648305a 5542365 e3b1b56 931b52f 648305a 931b52f 4844e74 542378c 2d77795 542378c 4844e74 542378c 648305a 542378c a2dcee4 4844e74 542378c a2dcee4 542378c 4844e74 542378c a2dcee4 4844e74 542378c a2dcee4 4844e74 542378c a2dcee4 4844e74 ecf5f29 db882b8 542378c a2dcee4 542378c db882b8 542378c a2dcee4 542378c a2dcee4 542378c a2dcee4 542378c 472c4cc a2dcee4 472c4cc 542378c a2dcee4 db882b8 e3b1b56 f139b0b a2dcee4 f139b0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
---
title: DALL·E mini
emoji: 🥑
colorFrom: yellow
colorTo: green
sdk: streamlit
app_file: app/streamlit/app.py
pinned: True
license: apache-2.0
---
# DALL·E Mini
[![Join us on Discord](https://img.shields.io/discord/823813159592001537?color=5865F2&logo=discord&logoColor=white)](https://discord.gg/xBPBXfcFHd)
_Generate images from a text prompt_
<img src="https://github.com/borisdayma/dalle-mini/raw/main/img/logo.png" width="200">
Our logo was generated with DALL·E mini using the prompt "logo of an armchair in the shape of an avocado".
## How to use it?
There are several ways to use DALL·E mini to create your own images:
* use [the official DALL·E Mini demo](https://huggingface.co/spaces/dalle-mini/dalle-mini)
* experiment with the pipeline step by step through our [`inference pipeline notebook`](tools/inference/inference_pipeline.ipynb)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb)
* spin off your own app with [DALL-E Playground repository](https://github.com/saharmor/dalle-playground) (thanks [Sahar](https://twitter.com/theaievangelist))
## How does it work?
Refer to [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA).
## Contributing
Join the community on the [LAION Discord](https://discord.gg/xBPBXfcFHd).
Any contribution is welcome, from reporting issues to proposing fixes/improvements or testing the model with cool prompts!
## Development
### Dependencies Installation
For inference only, use `pip install git+https://github.com/borisdayma/dalle-mini.git`.
For development, clone the repo and use `pip install -e ".[dev]"`.
Before making a PR, check style with `make style`.
### Training of DALL·E mini
Use [`tools/train/train.py`](tools/train/train.py).
You can also adjust the [sweep configuration file](https://docs.wandb.ai/guides/sweeps) if you need to perform a hyperparameter search.
## FAQ
### Where to find the latest models?
Trained models are on 🤗 Model Hub:
* [VQGAN-f16-16384](https://huggingface.co/dalle-mini/vqgan_imagenet_f16_16384) for encoding/decoding images
* [DALL·E mini](https://huggingface.co/flax-community/dalle-mini) for generating images from a text prompt
### Where does the logo come from?
The "armchair in the shape of an avocado" was used by OpenAI when releasing DALL·E to illustrate the model's capabilities. Having successful predictions on this prompt represents a big milestone to us.
## Acknowledgements
* 🤗 Hugging Face for organizing [the FLAX/JAX community week](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects)
* Google [TPU Research Cloud (TRC) program](https://sites.research.google/trc/) for providing computing resources
* [Weights & Biases](https://wandb.com/) for providing the infrastructure for experiment tracking and model management
## Authors & Contributors
DALL·E mini was initially developed by:
* [Boris Dayma](https://github.com/borisdayma)
* [Suraj Patil](https://github.com/patil-suraj)
* [Pedro Cuenca](https://github.com/pcuenca)
* [Khalid Saifullah](https://github.com/khalidsaifullaah)
* [Tanishq Abraham](https://github.com/tmabraham)
* [Phúc Lê Khắc](https://github.com/lkhphuc)
* [Luke Melas](https://github.com/lukemelas)
* [Ritobrata Ghosh](https://github.com/ghosh-r)
Many thanks to the people who helped make it better:
* the [DALLE-Pytorch](https://discord.gg/xBPBXfcFHd) and [EleutherAI](https://www.eleuther.ai/) communities for testing and exchanging cool ideas
* [Rohan Anil](https://github.com/rohan-anil) for adding Distributed Shampoo optimizer
* [Phil Wang](https://github.com/lucidrains) has provided a lot of cool implementations of transformer variants and gives interesting insights with [x-transformers](https://github.com/lucidrains/x-transformers)
* [Katherine Crowson](https://github.com/crowsonkb) for [super conditioning](https://twitter.com/RiversHaveWings/status/1478093658716966912)
## Citing DALL·E mini
If you find DALL·E mini useful in your research or wish to refer, please use the following BibTeX entry.
```text
@misc{Dayma_DALL·E_Mini_2021,
author = {Dayma, Boris and Patil, Suraj and Cuenca, Pedro and Saifullah, Khalid and Abraham, Tanishq and Lê Khắc, Phúc and Melas, Luke and Ghosh, Ritobrata},
doi = {10.5281/zenodo.5146400},
month = {7},
title = {DALL·E Mini},
url = {https://github.com/borisdayma/dalle-mini},
year = {2021}
}
```
## References
Original DALL·E from "[Zero-Shot Text-to-Image Generation](https://arxiv.org/abs/2102.12092)" with image quantization from "[Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)".
Image encoder from "[Taming Transformers for High-Resolution Image Synthesis](https://arxiv.org/abs/2012.09841v2)".
Sequence to sequence model based on "[BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461v1)" with implementation of a few variants:
* "[GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202)"
* "[Deepnet: Scaling Transformers to 1,000 Layers](https://arxiv.org/abs/2203.00555)"
* "[NormFormer: Improved Transformer Pretraining with Extra Normalization](https://arxiv.org/abs/2110.09456)"
* "[Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)"
* "[CogView: Mastering Text-to-Image Generation via Transformers](https://arxiv.org/abs/2105.13290v2)"
* "[Root Mean Square Layer Normalization](https://arxiv.org/abs/1910.07467)"
* "[Sinkformers: Transformers with Doubly Stochastic Attention](https://arxiv.org/abs/2110.11773)"
Main optimizer (Distributed Shampoo) from "[Scalable Second Order Optimization for Deep Learning](https://arxiv.org/abs/2002.09018)".
### Citations
```text
@misc{
title={Zero-Shot Text-to-Image Generation},
author={Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
year={2021},
eprint={2102.12092},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```text
@misc{
title={Learning Transferable Visual Models From Natural Language Supervision},
author={Alec Radford and Jong Wook Kim and Chris Hallacy and Aditya Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
year={2021},
eprint={2103.00020},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```text
@misc{
title={Taming Transformers for High-Resolution Image Synthesis},
author={Patrick Esser and Robin Rombach and Björn Ommer},
year={2021},
eprint={2012.09841},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
```text
@misc{
title={BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension},
author={Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Ves Stoyanov and Luke Zettlemoyer},
year={2019},
eprint={1910.13461},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```text
@misc{
title={Scalable Second Order Optimization for Deep Learning},
author={Rohan Anil and Vineet Gupta and Tomer Koren and Kevin Regan and Yoram Singer},
year={2021},
eprint={2002.09018},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
```text
@misc{
title={GLU Variants Improve Transformer},
author={Noam Shazeer},
year={2020},
url={https://arxiv.org/abs/2002.05202}
}
```
```text
@misc{
title={DeepNet: Scaling transformers to 1,000 layers},
author={Wang, Hongyu and Ma, Shuming and Dong, Li and Huang, Shaohan and Zhang, Dongdong and Wei, Furu},
year={2022},
eprint={2203.00555}
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
```text
@misc{
title={NormFormer: Improved Transformer Pretraining with Extra Normalization},
author={Sam Shleifer and Jason Weston and Myle Ott},
year={2021},
eprint={2110.09456},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```text
@inproceedings{
title={Swin Transformer V2: Scaling Up Capacity and Resolution},
author={Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo},
booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}
```
```text
@misc{
title = {CogView: Mastering Text-to-Image Generation via Transformers},
author = {Ming Ding and Zhuoyi Yang and Wenyi Hong and Wendi Zheng and Chang Zhou and Da Yin and Junyang Lin and Xu Zou and Zhou Shao and Hongxia Yang and Jie Tang},
year = {2021},
eprint = {2105.13290},
archivePrefix = {arXiv},
primaryClass = {cs.CV}
}
```
```text
@misc{
title = {Root Mean Square Layer Normalization},
author = {Biao Zhang and Rico Sennrich},
year = {2019},
eprint = {1910.07467},
archivePrefix = {arXiv},
primaryClass = {cs.LG}
}
```
```text
@misc{
title = {Sinkformers: Transformers with Doubly Stochastic Attention},
url = {https://arxiv.org/abs/2110.11773},
author = {Sander, Michael E. and Ablin, Pierre and Blondel, Mathieu and Peyré, Gabriel},
publisher = {arXiv},
year = {2021},
}
```
```text
@misc{
title = {Smooth activations and reproducibility in deep networks},
url = {https://arxiv.org/abs/2010.09931},
author = {Shamir, Gil I. and Lin, Dong and Coviello, Lorenzo},
publisher = {arXiv},
year = {2020},
}
```
|