logo_generator / seq2seq /run_seq2seq_flax.py
boris's picture
feat: use str mode for json
3e6ab1f
raw
history blame
38.3 kB
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for seq2seq, text to image.
Script adapted from run_summarization_flax.py
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import os
# set a common huggingface cache folder (used with datasets and transformers) and wandb cache folder (used with artifacts)
os.environ['HF_HOME'] = '/data/huggingface/' # required before importing transformers & datasets
os.environ['WANDB_CACHE_DIR'] = '/data/wandb/' # required before importing wandb
import logging as pylogging # To avoid collision with transformers.utils.logging
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Optional
import json
import datasets
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import Dataset, load_dataset, load_metric
from tqdm import tqdm
import jax
import jax.numpy as jnp
import optax
import transformers
from filelock import FileLock
from flax import jax_utils, traverse_util
from flax.serialization import from_bytes, to_bytes
import flax.linen as nn
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from transformers import (
CONFIG_MAPPING,
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
AutoConfig,
AutoTokenizer,
FlaxAutoModelForSeq2SeqLM,
FlaxBartForConditionalGeneration,
HfArgumentParser,
TrainingArguments,
)
from transformers.models.bart.modeling_flax_bart import *
from transformers.file_utils import is_offline_mode
import wandb
logger = pylogging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Model hyperparameters, for convenience
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
BOS_TOKEN_ID = 16384
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=BASE_MODEL,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default='caption',
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
encoding_column: Optional[str] = field(
default='encoding',
metadata={"help": "The name of the column in the datasets containing the image encodings."},
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
)
max_source_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
no_decay: bool = field(
default=False, metadata={"help": "Whether to use decay in the learning rate scheduler."}
)
max_target_length: Optional[int] = field(
default=OUTPUT_LENGTH,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
val_max_target_length: Optional[int] = field(
default=OUTPUT_LENGTH,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
"during evaluation."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
preprocessing_num_workers: Optional[int] = field(
default=80, # ensure we have the same datasets cached data and avoid using too much space
metadata={"help": "The number of processes to use for the preprocessing."},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
predict_with_generate: bool = field(
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
"which is used during evaluation."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
log_interval: Optional[int] = field(
default=40,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
log_model: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
save_model_steps: Optional[int] = field(
default=3000, # about once every hour in our experiments
metadata={
"help": "For logging the model more frequently. Used only when `log_model` is set."
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
grad_accum: jnp.ndarray
optimizer_step: int
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
class CustomFlaxBartModule(FlaxBartModule):
def setup(self):
# we keep shared to easily load pre-trained weights
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
# a separate embedding is used for the decoder
self.decoder_embed = nn.Embed(
OUTPUT_VOCAB_SIZE,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
dtype=self.dtype,
)
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
# the decoder has a different config
decoder_config = BartConfig(self.config.to_dict())
decoder_config.max_position_embeddings = OUTPUT_LENGTH
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
def setup(self):
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
OUTPUT_VOCAB_SIZE,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
)
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
module_class = CustomFlaxBartForConditionalGenerationModule
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
"""
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
Shuffle batches if `shuffle` is `True`.
"""
steps_per_epoch = len(dataset) // batch_size
if shuffle:
batch_idx = jax.random.permutation(rng, len(dataset))
else:
batch_idx = jnp.arange(len(dataset))
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
for idx in batch_idx:
batch = dataset[idx]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
def create_learning_rate_fn(
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float, no_decay: bool
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
steps_per_epoch = train_ds_size // train_batch_size
num_train_steps = steps_per_epoch * num_train_epochs
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
if no_decay:
return warmup_fn
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
return schedule_fn
def wandb_log(metrics, step=None, prefix=None):
if jax.process_index() == 0:
log_metrics = {f'{prefix}/{k}' if prefix is not None else k: jax.device_get(v) for k,v in metrics.items()}
if step is not None:
log_metrics['train/step'] = step
wandb.log(log_metrics)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
logger.warning(f"eval_steps has been manually hardcoded") # TODO: remove it later, convenient for now
training_args.eval_steps = 400
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty."
"Use --overwrite_output_dir to overcome."
)
# Set up wandb run
wandb.init(
entity='wandb',
project='hf-flax-dalle-mini',
job_type='Seq2SeqVQGAN',
config=parser.parse_args()
)
# set default x-axis as 'train/step'
wandb.define_metric('train/step')
wandb.define_metric('*', step_metric='train/step')
# Make one log on every process with the configuration for debugging.
pylogging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=pylogging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR)
if jax.process_index() == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
data_files = {}
logger.warning(f"Datasets path have been manually hardcoded") # TODO: remove it later, convenient for now
if data_args.train_file is not None:
data_files["train"] = ["/data/CC3M/training-encoded.tsv", "/data/CC12M/encoded-train.tsv"]
if data_args.validation_file is not None:
data_files["validation"] = ["/data/CC3M/validation-encoded.tsv"]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
)
# Set up our new model config
config = BartConfig.from_pretrained(model_args.model_name_or_path)
config.tie_word_embeddings = False
config.decoder_start_token_id = BOS_TOKEN_ID # for first token
config.bos_token_id = BOS_TOKEN_ID # should not be used (due to forced_bos_token_id)
config.pos_token_id = BOS_TOKEN_ID # should not be needed (as we generate until max_length)
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable
config.forced_bos_token_id = None # we don't need this token
config.forced_eos_token_id = None # we don't need this token
config.force_bos_token_to_be_generated = False # otherwise it sets bos_token_id at loading
config.min_length = data_args.max_target_length
config.max_length = data_args.max_target_length
print(f"TPUs: {jax.device_count()}")
assert jax.device_count() == 8, "TPUs in use, please check running processes"
# Create a custom model and initialize it randomly
model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
# Use pre-trained weights for encoder
model.params['model']['encoder'] = base_model.params['model']['encoder']
model.params['model']['shared'] = base_model.params['model']['shared']
del base_model
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = dataset["train"].column_names
elif training_args.do_eval:
column_names = dataset["validation"].column_names
elif training_args.do_predict:
column_names = dataset["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
text_column = data_args.text_column
encoding_column = data_args.encoding_column
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = np.zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1]
shifted_input_ids[:, 0] = decoder_start_token_id
return shifted_input_ids
def preprocess_function(examples):
inputs = examples[text_column]
inputs = [prefix + inp for inp in inputs]
# Setting padding="max_length" as we need fixed length inputs for jitted functions
model_inputs = tokenizer(
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
)
# set up targets
# Note: labels correspond to our target indices
# decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
labels = [eval(indices) for indices in examples['encoding']]
labels = np.asarray(labels)
# We need the labels, in addition to the decoder_input_ids, for the compute_loss function
model_inputs["labels"] = labels
# In our case, this prepends the bos token and removes the last one
decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id)
model_inputs["decoder_input_ids"] = decoder_input_ids
return model_inputs
if training_args.do_train:
if "train" not in dataset:
raise ValueError("--do_train requires a train dataset")
train_dataset = dataset["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in dataset:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = dataset["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in dataset:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = dataset["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Metric
#metric = load_metric("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(preds, labels):
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results from ROUGE
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
# Initialize our training
rng = jax.random.PRNGKey(training_args.seed)
rng, dropout_rng = jax.random.split(rng)
# Store some constant
num_epochs = int(training_args.num_train_epochs)
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
steps_per_epoch = len(train_dataset) // train_batch_size
total_steps = steps_per_epoch * num_epochs
total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs
# Create learning rate schedule
linear_decay_lr_schedule_fn = create_learning_rate_fn(
len(train_dataset),
total_batch_size,
training_args.num_train_epochs,
training_args.warmup_steps,
training_args.learning_rate,
data_args.no_decay
)
# We use Optax's "masking" functionality to not apply weight decay
# to bias and LayerNorm scale parameters. decay_mask_fn returns a
# mask boolean with the same structure as the parameters.
# The mask is True for parameters that should be decayed.
# Note that this mask is specifically adapted for FlaxBart.
# For FlaxT5, one should correct the layer norm parameter naming
# accordingly - see `run_t5_mlm_flax.py` e.g.
def decay_mask_fn(params):
flat_params = traverse_util.flatten_dict(params)
layer_norm_params = [
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
]
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
return traverse_util.unflatten_dict(flat_mask)
# create adam optimizer
if training_args.adafactor:
# We use the default parameters here to initialize adafactor,
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
optimizer = optax.adafactor(
learning_rate=linear_decay_lr_schedule_fn,
)
else:
optimizer = optax.adamw(
learning_rate=linear_decay_lr_schedule_fn,
b1=training_args.adam_beta1,
b2=training_args.adam_beta2,
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
mask=decay_mask_fn,
)
# Setup train state
state = TrainState.create(
apply_fn=model.__call__,
params=model.params,
tx=optimizer,
dropout_rng=dropout_rng,
grad_accum=jax.tree_map(jnp.zeros_like, model.params),
optimizer_step=0,
)
# label smoothed cross entropy
def loss_fn(logits, labels):
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
loss = loss.mean()
return loss
# Define gradient update step fn
def train_step(state, batch):
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
def compute_loss(params):
labels = batch.pop("labels")
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
loss = loss_fn(logits, labels)
return loss
grad_fn = jax.value_and_grad(compute_loss)
loss, grads = grad_fn(state.params)
grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum)
def update_fn():
grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum)
grads = jax.lax.pmean(grads, "batch")
new_state = state.apply_gradients(
grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step + 1
)
return new_state
new_state = jax.lax.cond(
(state.step + 1) % training_args.gradient_accumulation_steps == 0,
lambda _: update_fn(),
lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1),
None,
)
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return new_state.replace(dropout_rng=new_dropout_rng), metrics
# Define eval fn
def eval_step(params, batch):
labels = batch.pop("labels")
logits = model(**batch, params=params, train=False)[0]
loss = loss_fn(logits, labels)
# summarize metrics
metrics = {"loss": loss}
metrics = jax.lax.pmean(metrics, axis_name="batch")
return metrics
# Define generation function
max_length = (
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
)
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def generate_step(params, batch):
model.params = params
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
return output_ids.sequences
# Create parallel version of the train and eval step
p_train_step = jax.pmap(
train_step, "batch", donate_argnums=(0,)
)
p_eval_step = jax.pmap(eval_step, "batch")
p_generate_step = jax.pmap(generate_step, "batch")
# Replicate the train state on each device
state = state.replicate()
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(
f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}"
)
logger.info(f" Total global steps = {total_steps}")
logger.info(f" Total optimization steps = {total_optimization_steps}")
train_time = 0
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
global_step = 0
def run_evaluation():
# ======================== Evaluating ==============================
eval_metrics = []
if training_args.do_eval:
eval_preds = []
eval_labels = []
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
eval_steps = len(eval_dataset) // eval_batch_size
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
# Model forward
batch = next(eval_loader)
labels = batch["labels"]
metrics = p_eval_step(state.params, batch)
eval_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = p_generate_step(state.params, batch)
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
# normalize eval metrics
eval_metrics = get_metrics(eval_metrics)
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
# log metrics
wandb_log(eval_metrics, step=global_step, prefix='eval')
# compute ROUGE metrics
rouge_desc = ""
# if data_args.predict_with_generate:
# rouge_metrics = compute_metrics(eval_preds, eval_labels)
# eval_metrics.update(rouge_metrics)
# rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics and update progress bar
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
epochs.write(desc)
epochs.desc = desc
return eval_metrics
def run_save_model(state, step, epoch, eval_metrics=None):
if jax.process_index() == 0:
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
# save model locally
model.save_pretrained(
training_args.output_dir,
params=params,
)
# save state
state = unreplicate(state)
with (Path(training_args.output_dir) / 'opt_state.msgpack').open('wb') as f:
f.write(to_bytes(state.opt_state))
with (Path(training_args.output_dir) / 'training_state.json').open('w') as f:
json.dump({'step': state.step.item()}, f)
# save to W&B
if data_args.log_model:
metadata = {'step': step, 'epoch': epoch}
if eval_metrics is not None:
metadata['eval/loss'] = eval_metrics['loss']
artifact = wandb.Artifact(
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
)
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack'))
artifact.add_file(str(Path(training_args.output_dir) / 'config.json'))
artifact.add_file(str(Path(training_args.output_dir) / 'opt_state.msgpack'))
artifact.add_file(str(Path(training_args.output_dir) / 'training_state.json'))
wandb.run.log_artifact(artifact)
# save to the hub
if training_args.push_to_hub:
model.save_pretrained(
training_args.output_dir,
params=params,
push_to_hub=training_args.push_to_hub,
commit_message=f"Saving weights and logs of epoch {epoch+1}",
temp_dir=True # avoid issues with being in a repository
)
for epoch in epochs:
# ======================== Training ================================
train_start = time.time()
# Create sampling rng
rng, input_rng = jax.random.split(rng)
# Generate an epoch by shuffling sampling indices from the train dataset
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
steps_per_epoch = len(train_dataset) // train_batch_size
# train
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
global_step +=1
batch = next(train_loader)
state, train_metric = p_train_step(state, batch)
if global_step % data_args.log_interval == 0 and jax.process_index() == 0:
# log metrics
wandb_log(unreplicate(train_metric), step=global_step, prefix='train')
if global_step % training_args.eval_steps == 0:
run_evaluation()
if global_step % data_args.save_model_steps == 0:
run_save_model(state, global_step, epoch)
# log final train metrics
wandb_log(unreplicate(train_metric), step=global_step, prefix='train')
train_time += time.time() - train_start
train_metric = unreplicate(train_metric)
epochs.write(
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
)
# Final evaluation
eval_metrics = run_evaluation()
# save checkpoint after each epoch and push checkpoint to the hub
run_save_model(state, global_step, epoch, eval_metrics)
# ======================== Prediction loop ==============================
if training_args.do_predict:
logger.info("*** Predict ***")
pred_metrics = []
pred_generations = []
pred_labels = []
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
pred_steps = len(predict_dataset) // eval_batch_size
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
# Model forward
batch = next(pred_loader)
labels = batch["labels"]
metrics = p_eval_step(state.params, batch)
pred_metrics.append(metrics)
# generation
if data_args.predict_with_generate:
generated_ids = p_generate_step(state.params, batch)
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
# normalize prediction metrics
pred_metrics = get_metrics(pred_metrics)
pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
# compute ROUGE metrics
rouge_desc = ""
if data_args.predict_with_generate:
rouge_metrics = compute_metrics(pred_generations, pred_labels)
pred_metrics.update(rouge_metrics)
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
# Print metrics
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
logger.info(desc)
if __name__ == "__main__":
main()