Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Team All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Fine-tuning the library models for seq2seq, text to image. | |
Script adapted from run_summarization_flax.py | |
""" | |
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
import os | |
# set a common huggingface cache folder (used with datasets and transformers) and wandb cache folder (used with artifacts) | |
os.environ['HF_HOME'] = '/data/huggingface/' # required before importing transformers & datasets | |
os.environ['WANDB_CACHE_DIR'] = '/data/wandb/' # required before importing wandb | |
import logging as pylogging # To avoid collision with transformers.utils.logging | |
import sys | |
import time | |
from dataclasses import dataclass, field | |
from functools import partial | |
from pathlib import Path | |
from typing import Callable, Optional | |
import json | |
import datasets | |
import nltk # Here to have a nice missing dependency error message early on | |
import numpy as np | |
from datasets import Dataset, load_dataset, load_metric | |
from tqdm import tqdm | |
import jax | |
import jax.numpy as jnp | |
import optax | |
import transformers | |
from filelock import FileLock | |
from flax import jax_utils, traverse_util | |
from flax.serialization import from_bytes, to_bytes | |
import flax.linen as nn | |
from flax.jax_utils import unreplicate | |
from flax.training import train_state | |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key | |
from transformers import ( | |
CONFIG_MAPPING, | |
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
AutoConfig, | |
AutoTokenizer, | |
FlaxAutoModelForSeq2SeqLM, | |
FlaxBartForConditionalGeneration, | |
HfArgumentParser, | |
TrainingArguments, | |
) | |
from transformers.models.bart.modeling_flax_bart import * | |
from transformers.file_utils import is_offline_mode | |
import wandb | |
logger = pylogging.getLogger(__name__) | |
try: | |
nltk.data.find("tokenizers/punkt") | |
except (LookupError, OSError): | |
if is_offline_mode(): | |
raise LookupError( | |
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" | |
) | |
with FileLock(".lock") as lock: | |
nltk.download("punkt", quiet=True) | |
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) | |
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
# Model hyperparameters, for convenience | |
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos | |
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos | |
BOS_TOKEN_ID = 16384 | |
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large | |
class ModelArguments: | |
""" | |
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
""" | |
model_name_or_path: Optional[str] = field( | |
default=BASE_MODEL, | |
metadata={ | |
"help": "The model checkpoint for weights initialization." | |
"Don't set if you want to train a model from scratch." | |
}, | |
) | |
model_type: Optional[str] = field( | |
default=None, | |
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
) | |
config_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
) | |
tokenizer_name: Optional[str] = field( | |
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
) | |
cache_dir: Optional[str] = field( | |
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
) | |
use_fast_tokenizer: bool = field( | |
default=True, | |
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
) | |
dtype: Optional[str] = field( | |
default="float32", | |
metadata={ | |
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." | |
}, | |
) | |
from_checkpoint: Optional[str] = field( | |
default=None, | |
metadata={ | |
"help": "Loads a pretrained wandb checkpoint. Use artifact reference." | |
}, | |
) | |
class DataTrainingArguments: | |
""" | |
Arguments pertaining to what data we are going to input our model for training and eval. | |
""" | |
dataset_name: Optional[str] = field( | |
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
) | |
dataset_config_name: Optional[str] = field( | |
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
) | |
text_column: Optional[str] = field( | |
default='caption', | |
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, | |
) | |
encoding_column: Optional[str] = field( | |
default='encoding', | |
metadata={"help": "The name of the column in the datasets containing the image encodings."}, | |
) | |
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
validation_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
) | |
test_file: Optional[str] = field( | |
default=None, | |
metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, | |
) | |
max_source_length: Optional[int] = field( | |
default=128, | |
metadata={ | |
"help": "The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
no_decay: bool = field( | |
default=False, metadata={"help": "Whether to use decay in the learning rate scheduler."} | |
) | |
max_target_length: Optional[int] = field( | |
default=OUTPUT_LENGTH, | |
metadata={ | |
"help": "The maximum total sequence length for target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded." | |
}, | |
) | |
val_max_target_length: Optional[int] = field( | |
default=OUTPUT_LENGTH, | |
metadata={ | |
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
"This argument is also used to override the `max_length` param of `model.generate`, which is used " | |
"during evaluation." | |
}, | |
) | |
max_train_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
}, | |
) | |
max_eval_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
"value if set." | |
}, | |
) | |
max_predict_samples: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
"value if set." | |
}, | |
) | |
preprocessing_num_workers: Optional[int] = field( | |
default=80, # ensure we have the same datasets cached data and avoid using too much space | |
metadata={"help": "The number of processes to use for the preprocessing."}, | |
) | |
source_prefix: Optional[str] = field( | |
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
) | |
predict_with_generate: bool = field( | |
default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} | |
) | |
num_beams: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " | |
"which is used during evaluation." | |
}, | |
) | |
overwrite_cache: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
log_interval: Optional[int] = field( | |
default=40, | |
metadata={ | |
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
}, | |
) | |
log_model: bool = field( | |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
) | |
save_model_steps: Optional[int] = field( | |
default=3000, # about once every hour in our experiments | |
metadata={ | |
"help": "For logging the model more frequently. Used only when `log_model` is set." | |
}, | |
) | |
def __post_init__(self): | |
if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
raise ValueError("Need either a dataset name or a training/validation file.") | |
else: | |
if self.train_file is not None: | |
extension = self.train_file.split(".")[-1] | |
assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file." | |
if self.validation_file is not None: | |
extension = self.validation_file.split(".")[-1] | |
assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file." | |
if self.val_max_target_length is None: | |
self.val_max_target_length = self.max_target_length | |
class TrainState(train_state.TrainState): | |
dropout_rng: jnp.ndarray | |
grad_accum: jnp.ndarray | |
optimizer_step: int | |
def replicate(self): | |
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) | |
class CustomFlaxBartModule(FlaxBartModule): | |
def setup(self): | |
# we keep shared to easily load pre-trained weights | |
self.shared = nn.Embed( | |
self.config.vocab_size, | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
dtype=self.dtype, | |
) | |
# a separate embedding is used for the decoder | |
self.decoder_embed = nn.Embed( | |
OUTPUT_VOCAB_SIZE, | |
self.config.d_model, | |
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
dtype=self.dtype, | |
) | |
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) | |
# the decoder has a different config | |
decoder_config = BartConfig(self.config.to_dict()) | |
decoder_config.max_position_embeddings = OUTPUT_LENGTH | |
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE | |
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed) | |
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): | |
def setup(self): | |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype) | |
self.lm_head = nn.Dense( | |
OUTPUT_VOCAB_SIZE, | |
use_bias=False, | |
dtype=self.dtype, | |
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), | |
) | |
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE)) | |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration): | |
module_class = CustomFlaxBartForConditionalGenerationModule | |
def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): | |
""" | |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. | |
Shuffle batches if `shuffle` is `True`. | |
""" | |
steps_per_epoch = len(dataset) // batch_size | |
if shuffle: | |
batch_idx = jax.random.permutation(rng, len(dataset)) | |
else: | |
batch_idx = jnp.arange(len(dataset)) | |
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. | |
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) | |
for idx in batch_idx: | |
batch = dataset[idx] | |
batch = {k: jnp.array(v) for k, v in batch.items()} | |
batch = shard(batch) | |
yield batch | |
def create_learning_rate_fn( | |
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float, no_decay: bool | |
) -> Callable[[int], jnp.array]: | |
"""Returns a linear warmup, linear_decay learning rate function.""" | |
steps_per_epoch = train_ds_size // train_batch_size | |
num_train_steps = steps_per_epoch * num_train_epochs | |
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) | |
if no_decay: | |
return warmup_fn | |
decay_fn = optax.linear_schedule( | |
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps | |
) | |
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) | |
return schedule_fn | |
def wandb_log(metrics, step=None, prefix=None): | |
if jax.process_index() == 0: | |
log_metrics = {f'{prefix}/{k}' if prefix is not None else k: jax.device_get(v) for k,v in metrics.items()} | |
if step is not None: | |
log_metrics['train/step'] = step | |
wandb.log(log_metrics) | |
def main(): | |
# See all possible arguments in src/transformers/training_args.py | |
# or by passing the --help flag to this script. | |
# We now keep distinct sets of args, for a cleaner separation of concerns. | |
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
# If we pass only one argument to the script and it's the path to a json file, | |
# let's parse it to get our arguments. | |
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
else: | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
logger.warning(f"WARNING: eval_steps has been manually hardcoded") # TODO: remove it later, convenient for now | |
training_args.eval_steps = 400 | |
if ( | |
os.path.exists(training_args.output_dir) | |
and os.listdir(training_args.output_dir) | |
and training_args.do_train | |
and not training_args.overwrite_output_dir | |
): | |
raise ValueError( | |
f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
"Use --overwrite_output_dir to overcome." | |
) | |
# Set up wandb run | |
wandb.init( | |
entity='wandb', | |
project='hf-flax-dalle-mini', | |
job_type='Seq2SeqVQGAN', | |
config=parser.parse_args() | |
) | |
# set default x-axis as 'train/step' | |
wandb.define_metric('train/step') | |
wandb.define_metric('*', step_metric='train/step') | |
# Make one log on every process with the configuration for debugging. | |
pylogging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=pylogging.INFO, | |
) | |
# Setup logging, we only want one process per machine to log things on the screen. | |
logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR) | |
if jax.process_index() == 0: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
logger.info(f"Training/evaluation parameters {training_args}") | |
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) | |
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
# (the dataset will be downloaded automatically from the datasets Hub). | |
# | |
data_files = {} | |
logger.warning(f"WARNING: Datasets path have been manually hardcoded") # TODO: remove it later, convenient for now | |
if data_args.train_file is not None: | |
data_files["train"] = ["/data/CC3M/training-encoded.tsv", "/data/CC12M/encoded-train.tsv", "/data/YFCC/metadata_encoded.tsv"] | |
if data_args.validation_file is not None: | |
data_files["validation"] = ["/data/CC3M/validation-encoded.tsv"] | |
if data_args.test_file is not None: | |
data_files["test"] = data_args.test_file | |
dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t") | |
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
# https://huggingface.co/docs/datasets/loading_datasets.html. | |
# Load pretrained model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer | |
) | |
if model_args.from_checkpoint is not None: | |
artifact = wandb.run.use_artifact(model_args.from_checkpoint) | |
artifact_dir = artifact.download() | |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir) | |
# some models will try to change bos (because of force_bos_token_to_be_generated) | |
# we ensure bos and eos are not forced | |
model.config.force_bos_token_to_be_generated = False | |
model.config.forced_bos_token_id = None | |
model.config.forced_eos_token_id = None | |
# used in the preprocessing function | |
config = model.config | |
else: | |
base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained( | |
model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) | |
) | |
# Set up our new model config | |
config = BartConfig.from_pretrained(model_args.model_name_or_path) | |
config.tie_word_embeddings = False | |
config.decoder_start_token_id = BOS_TOKEN_ID # for first token | |
config.bos_token_id = BOS_TOKEN_ID # should not be used (due to forced_bos_token_id) | |
config.pos_token_id = BOS_TOKEN_ID # should not be needed (as we generate until max_length) | |
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable | |
config.forced_bos_token_id = None # we don't need this token | |
config.forced_eos_token_id = None # we don't need this token | |
config.force_bos_token_to_be_generated = False # otherwise it sets bos_token_id at loading | |
config.min_length = data_args.max_target_length | |
config.max_length = data_args.max_target_length | |
# Create a custom model and initialize it randomly | |
model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)) | |
# Use pre-trained weights for encoder | |
model.params['model']['encoder'] = base_model.params['model']['encoder'] | |
model.params['model']['shared'] = base_model.params['model']['shared'] | |
del base_model | |
print(f"TPUs: {jax.device_count()}") | |
assert jax.device_count() == 8, "TPUs in use, please check running processes" | |
prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
# Preprocessing the datasets. | |
# We need to tokenize inputs and targets. | |
if training_args.do_train: | |
column_names = dataset["train"].column_names | |
elif training_args.do_eval: | |
column_names = dataset["validation"].column_names | |
elif training_args.do_predict: | |
column_names = dataset["test"].column_names | |
else: | |
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
return | |
# Get the column names for input/target. | |
text_column = data_args.text_column | |
encoding_column = data_args.encoding_column | |
# Temporarily set max_target_length for training. | |
max_target_length = data_args.max_target_length | |
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = np.zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1] | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
return shifted_input_ids | |
def preprocess_function(examples): | |
inputs = examples[text_column] | |
inputs = [prefix + inp for inp in inputs] | |
# Setting padding="max_length" as we need fixed length inputs for jitted functions | |
model_inputs = tokenizer( | |
inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" | |
) | |
# set up targets | |
# Note: labels correspond to our target indices | |
# decoder input ids are the same but shifted to the right with bos at the beginning (and without last token) | |
labels = [eval(indices) for indices in examples['encoding']] | |
labels = np.asarray(labels) | |
# We need the labels, in addition to the decoder_input_ids, for the compute_loss function | |
model_inputs["labels"] = labels | |
# In our case, this prepends the bos token and removes the last one | |
decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id) | |
model_inputs["decoder_input_ids"] = decoder_input_ids | |
return model_inputs | |
if training_args.do_train: | |
if "train" not in dataset: | |
raise ValueError("--do_train requires a train dataset") | |
train_dataset = dataset["train"] | |
if data_args.max_train_samples is not None: | |
train_dataset = train_dataset.select(range(data_args.max_train_samples)) | |
train_dataset = train_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on train dataset", | |
) | |
if training_args.do_eval: | |
max_target_length = data_args.val_max_target_length | |
if "validation" not in dataset: | |
raise ValueError("--do_eval requires a validation dataset") | |
eval_dataset = dataset["validation"] | |
if data_args.max_eval_samples is not None: | |
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) | |
eval_dataset = eval_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on validation dataset", | |
) | |
if training_args.do_predict: | |
max_target_length = data_args.val_max_target_length | |
if "test" not in dataset: | |
raise ValueError("--do_predict requires a test dataset") | |
predict_dataset = dataset["test"] | |
if data_args.max_predict_samples is not None: | |
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) | |
predict_dataset = predict_dataset.map( | |
preprocess_function, | |
batched=True, | |
num_proc=data_args.preprocessing_num_workers, | |
remove_columns=column_names, | |
load_from_cache_file=not data_args.overwrite_cache, | |
desc="Running tokenizer on prediction dataset", | |
) | |
# Metric | |
#metric = load_metric("rouge") | |
def postprocess_text(preds, labels): | |
preds = [pred.strip() for pred in preds] | |
labels = [label.strip() for label in labels] | |
# rougeLSum expects newline after each sentence | |
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] | |
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] | |
return preds, labels | |
def compute_metrics(preds, labels): | |
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
# Some simple post-processing | |
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) | |
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) | |
# Extract a few results from ROUGE | |
result = {key: value.mid.fmeasure * 100 for key, value in result.items()} | |
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] | |
result["gen_len"] = np.mean(prediction_lens) | |
result = {k: round(v, 4) for k, v in result.items()} | |
return result | |
# Initialize our training | |
rng = jax.random.PRNGKey(training_args.seed) | |
rng, dropout_rng = jax.random.split(rng) | |
# Store some constant | |
num_epochs = int(training_args.num_train_epochs) | |
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps | |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
total_steps = steps_per_epoch * num_epochs | |
total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs | |
# Create learning rate schedule | |
linear_decay_lr_schedule_fn = create_learning_rate_fn( | |
len(train_dataset), | |
total_batch_size, | |
training_args.num_train_epochs, | |
training_args.warmup_steps, | |
training_args.learning_rate, | |
data_args.no_decay | |
) | |
# We use Optax's "masking" functionality to not apply weight decay | |
# to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
# mask boolean with the same structure as the parameters. | |
# The mask is True for parameters that should be decayed. | |
# Note that this mask is specifically adapted for FlaxBart. | |
# For FlaxT5, one should correct the layer norm parameter naming | |
# accordingly - see `run_t5_mlm_flax.py` e.g. | |
def decay_mask_fn(params): | |
flat_params = traverse_util.flatten_dict(params) | |
layer_norm_params = [ | |
(name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"] | |
] | |
flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params} | |
return traverse_util.unflatten_dict(flat_mask) | |
# create adam optimizer | |
if training_args.adafactor: | |
# We use the default parameters here to initialize adafactor, | |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 | |
optimizer = optax.adafactor( | |
learning_rate=linear_decay_lr_schedule_fn, | |
) | |
else: | |
optimizer = optax.adamw( | |
learning_rate=linear_decay_lr_schedule_fn, | |
b1=training_args.adam_beta1, | |
b2=training_args.adam_beta2, | |
eps=training_args.adam_epsilon, | |
weight_decay=training_args.weight_decay, | |
mask=decay_mask_fn, | |
) | |
# Setup train state | |
state = TrainState.create( | |
apply_fn=model.__call__, | |
params=model.params, | |
tx=optimizer, | |
dropout_rng=dropout_rng, | |
grad_accum=jax.tree_map(jnp.zeros_like, model.params), | |
optimizer_step=0, | |
) | |
# label smoothed cross entropy | |
def loss_fn(logits, labels): | |
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) | |
loss = loss.mean() | |
return loss | |
# Define gradient update step fn | |
def train_step(state, batch): | |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) | |
def compute_loss(params): | |
labels = batch.pop("labels") | |
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
loss = loss_fn(logits, labels) | |
return loss | |
grad_fn = jax.value_and_grad(compute_loss) | |
loss, grads = grad_fn(state.params) | |
grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum) | |
def update_fn(): | |
grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum) | |
grads = jax.lax.pmean(grads, "batch") | |
new_state = state.apply_gradients( | |
grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step + 1 | |
) | |
return new_state | |
new_state = jax.lax.cond( | |
(state.step + 1) % training_args.gradient_accumulation_steps == 0, | |
lambda _: update_fn(), | |
lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1), | |
None, | |
) | |
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return new_state.replace(dropout_rng=new_dropout_rng), metrics | |
# Define eval fn | |
def eval_step(params, batch): | |
labels = batch.pop("labels") | |
logits = model(**batch, params=params, train=False)[0] | |
loss = loss_fn(logits, labels) | |
# summarize metrics | |
metrics = {"loss": loss} | |
metrics = jax.lax.pmean(metrics, axis_name="batch") | |
return metrics | |
# Define generation function | |
max_length = ( | |
data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length | |
) | |
num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} | |
def generate_step(params, batch): | |
model.params = params | |
output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) | |
return output_ids.sequences | |
# Create parallel version of the train and eval step | |
p_train_step = jax.pmap( | |
train_step, "batch", donate_argnums=(0,) | |
) | |
p_eval_step = jax.pmap(eval_step, "batch") | |
p_generate_step = jax.pmap(generate_step, "batch") | |
# Replicate the train state on each device | |
state = state.replicate() | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_epochs}") | |
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") | |
logger.info( | |
f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}" | |
) | |
logger.info(f" Total global steps = {total_steps}") | |
logger.info(f" Total optimization steps = {total_optimization_steps}") | |
train_time = 0 | |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
global_step = 0 | |
def run_evaluation(): | |
# ======================== Evaluating ============================== | |
eval_metrics = [] | |
if training_args.do_eval: | |
eval_preds = [] | |
eval_labels = [] | |
eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) | |
eval_steps = len(eval_dataset) // eval_batch_size | |
for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): | |
# Model forward | |
batch = next(eval_loader) | |
labels = batch["labels"] | |
metrics = p_eval_step(state.params, batch) | |
eval_metrics.append(metrics) | |
# generation | |
if data_args.predict_with_generate: | |
generated_ids = p_generate_step(state.params, batch) | |
eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) | |
# normalize eval metrics | |
eval_metrics = get_metrics(eval_metrics) | |
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) | |
# log metrics | |
wandb_log(eval_metrics, step=global_step, prefix='eval') | |
# compute ROUGE metrics | |
rouge_desc = "" | |
# if data_args.predict_with_generate: | |
# rouge_metrics = compute_metrics(eval_preds, eval_labels) | |
# eval_metrics.update(rouge_metrics) | |
# rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()]) | |
# Print metrics and update progress bar | |
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})" | |
epochs.write(desc) | |
epochs.desc = desc | |
return eval_metrics | |
def run_save_model(state, step, epoch, eval_metrics=None): | |
if jax.process_index() == 0: | |
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) | |
# save model locally | |
model.save_pretrained( | |
training_args.output_dir, | |
params=params, | |
) | |
# save state | |
state = unreplicate(state) | |
with (Path(training_args.output_dir) / 'opt_state.msgpack').open('wb') as f: | |
f.write(to_bytes(state.opt_state)) | |
with (Path(training_args.output_dir) / 'training_state.json').open('w') as f: | |
json.dump({'step': state.step.item()}, f) | |
# save to W&B | |
if data_args.log_model: | |
metadata = {'step': step, 'epoch': epoch} | |
if eval_metrics is not None: | |
metadata['eval/loss'] = eval_metrics['loss'] | |
artifact = wandb.Artifact( | |
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata | |
) | |
artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack')) | |
artifact.add_file(str(Path(training_args.output_dir) / 'config.json')) | |
artifact.add_file(str(Path(training_args.output_dir) / 'opt_state.msgpack')) | |
artifact.add_file(str(Path(training_args.output_dir) / 'training_state.json')) | |
wandb.run.log_artifact(artifact) | |
# save to the hub | |
if training_args.push_to_hub: | |
model.save_pretrained( | |
training_args.output_dir, | |
params=params, | |
push_to_hub=training_args.push_to_hub, | |
commit_message=f"Saving weights and logs of epoch {epoch+1}", | |
temp_dir=True # avoid issues with being in a repository | |
) | |
for epoch in epochs: | |
# ======================== Training ================================ | |
train_start = time.time() | |
# Create sampling rng | |
rng, input_rng = jax.random.split(rng) | |
# Generate an epoch by shuffling sampling indices from the train dataset | |
train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) | |
steps_per_epoch = len(train_dataset) // train_batch_size | |
# train | |
for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): | |
global_step +=1 | |
batch = next(train_loader) | |
state, train_metric = p_train_step(state, batch) | |
if global_step % data_args.log_interval == 0 and jax.process_index() == 0: | |
# log metrics | |
wandb_log(unreplicate(train_metric), step=global_step, prefix='train') | |
if global_step % training_args.eval_steps == 0: | |
run_evaluation() | |
if global_step % data_args.save_model_steps == 0: | |
run_save_model(state, global_step, epoch) | |
# log final train metrics | |
wandb_log(unreplicate(train_metric), step=global_step, prefix='train') | |
train_time += time.time() - train_start | |
train_metric = unreplicate(train_metric) | |
epochs.write( | |
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" | |
) | |
# Final evaluation | |
eval_metrics = run_evaluation() | |
# save checkpoint after each epoch and push checkpoint to the hub | |
run_save_model(state, global_step, epoch, eval_metrics) | |
# ======================== Prediction loop ============================== | |
if training_args.do_predict: | |
logger.info("*** Predict ***") | |
pred_metrics = [] | |
pred_generations = [] | |
pred_labels = [] | |
pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size) | |
pred_steps = len(predict_dataset) // eval_batch_size | |
for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): | |
# Model forward | |
batch = next(pred_loader) | |
labels = batch["labels"] | |
metrics = p_eval_step(state.params, batch) | |
pred_metrics.append(metrics) | |
# generation | |
if data_args.predict_with_generate: | |
generated_ids = p_generate_step(state.params, batch) | |
pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) | |
pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) | |
# normalize prediction metrics | |
pred_metrics = get_metrics(pred_metrics) | |
pred_metrics = jax.tree_map(jnp.mean, pred_metrics) | |
# compute ROUGE metrics | |
rouge_desc = "" | |
if data_args.predict_with_generate: | |
rouge_metrics = compute_metrics(pred_generations, pred_labels) | |
pred_metrics.update(rouge_metrics) | |
rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()]) | |
# Print metrics | |
desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})" | |
logger.info(desc) | |
if __name__ == "__main__": | |
main() | |