Spaces:
Runtime error
Runtime error
fix(data): minor bugs
Browse files- dalle_mini/data.py +23 -33
- dev/seq2seq/run_seq2seq_flax.py +5 -2
dalle_mini/data.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from dataclasses import dataclass, field
|
2 |
-
from datasets import load_dataset
|
|
|
3 |
import numpy as np
|
4 |
import jax
|
5 |
import jax.numpy as jnp
|
@@ -25,9 +26,9 @@ class Dataset:
|
|
25 |
do_train: bool = False
|
26 |
do_eval: bool = True
|
27 |
seed_dataset: int = None
|
28 |
-
train_dataset = field(init=False)
|
29 |
-
eval_dataset = field(init=False)
|
30 |
-
rng_dataset = field(init=False)
|
31 |
|
32 |
def __post_init__(self):
|
33 |
# define data_files
|
@@ -81,26 +82,21 @@ class Dataset:
|
|
81 |
# normalize text
|
82 |
if normalize_text:
|
83 |
text_normalizer = TextNormalizer()
|
|
|
|
|
|
|
|
|
|
|
84 |
for ds in ["train_dataset", "eval_dataset"]:
|
85 |
if hasattr(self, ds):
|
86 |
setattr(
|
87 |
self,
|
88 |
ds,
|
89 |
(
|
90 |
-
getattr(self, ds).map(
|
91 |
-
normalize_text,
|
92 |
-
fn_kwargs={
|
93 |
-
"text_column": self.text_column,
|
94 |
-
"text_normalizer": text_normalizer,
|
95 |
-
},
|
96 |
-
)
|
97 |
if self.streaming
|
98 |
else getattr(self, ds).map(
|
99 |
-
|
100 |
-
fn_kwargs={
|
101 |
-
"text_column": self.text_column,
|
102 |
-
"text_normalizer": text_normalizer,
|
103 |
-
},
|
104 |
num_proc=self.preprocessing_num_workers,
|
105 |
load_from_cache_file=not self.overwrite_cache,
|
106 |
desc="Normalizing datasets",
|
@@ -109,6 +105,14 @@ class Dataset:
|
|
109 |
)
|
110 |
|
111 |
# preprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
for ds in ["train_dataset", "eval_dataset"]:
|
113 |
if hasattr(self, ds):
|
114 |
setattr(
|
@@ -116,27 +120,13 @@ class Dataset:
|
|
116 |
ds,
|
117 |
(
|
118 |
getattr(self, ds).map(
|
119 |
-
|
120 |
batched=True,
|
121 |
-
fn_kwargs={
|
122 |
-
"tokenizer": tokenizer,
|
123 |
-
"text_column": self.text_column,
|
124 |
-
"encoding_column": self.encoding_column,
|
125 |
-
"max_source_length": self.max_source_length,
|
126 |
-
"decoder_start_token_id": decoder_start_token_id,
|
127 |
-
},
|
128 |
)
|
129 |
if self.streaming
|
130 |
else getattr(self, ds).map(
|
131 |
-
|
132 |
batched=True,
|
133 |
-
fn_kwargs={
|
134 |
-
"tokenizer": tokenizer,
|
135 |
-
"text_column": self.text_column,
|
136 |
-
"encoding_column": self.encoding_column,
|
137 |
-
"max_source_length": self.max_source_length,
|
138 |
-
"decoder_start_token_id": decoder_start_token_id,
|
139 |
-
},
|
140 |
remove_columns=getattr(ds, "column_names"),
|
141 |
num_proc=self.preprocessing_num_workers,
|
142 |
load_from_cache_file=not self.overwrite_cache,
|
@@ -230,7 +220,7 @@ def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
|
|
230 |
return shifted_input_ids
|
231 |
|
232 |
|
233 |
-
def
|
234 |
example[text_column] = text_normalizer(example[text_column])
|
235 |
return example
|
236 |
|
|
|
1 |
from dataclasses import dataclass, field
|
2 |
+
from datasets import load_dataset, Dataset
|
3 |
+
from functools import partial
|
4 |
import numpy as np
|
5 |
import jax
|
6 |
import jax.numpy as jnp
|
|
|
26 |
do_train: bool = False
|
27 |
do_eval: bool = True
|
28 |
seed_dataset: int = None
|
29 |
+
train_dataset: Dataset = field(init=False)
|
30 |
+
eval_dataset: Dataset = field(init=False)
|
31 |
+
rng_dataset: jnp.ndarray = field(init=False)
|
32 |
|
33 |
def __post_init__(self):
|
34 |
# define data_files
|
|
|
82 |
# normalize text
|
83 |
if normalize_text:
|
84 |
text_normalizer = TextNormalizer()
|
85 |
+
partial_normalize_function = partial(
|
86 |
+
normalize_function,
|
87 |
+
text_column=self.text_column,
|
88 |
+
text_normalizer=text_normalizer,
|
89 |
+
)
|
90 |
for ds in ["train_dataset", "eval_dataset"]:
|
91 |
if hasattr(self, ds):
|
92 |
setattr(
|
93 |
self,
|
94 |
ds,
|
95 |
(
|
96 |
+
getattr(self, ds).map(partial_normalize_function)
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
if self.streaming
|
98 |
else getattr(self, ds).map(
|
99 |
+
partial_normalize_function,
|
|
|
|
|
|
|
|
|
100 |
num_proc=self.preprocessing_num_workers,
|
101 |
load_from_cache_file=not self.overwrite_cache,
|
102 |
desc="Normalizing datasets",
|
|
|
105 |
)
|
106 |
|
107 |
# preprocess
|
108 |
+
partial_preprocess_function = partial(
|
109 |
+
preprocess_function,
|
110 |
+
tokenizer=tokenizer,
|
111 |
+
text_column=self.text_column,
|
112 |
+
encoding_column=self.encoding_column,
|
113 |
+
max_source_length=self.max_source_length,
|
114 |
+
decoder_start_token_id=decoder_start_token_id,
|
115 |
+
)
|
116 |
for ds in ["train_dataset", "eval_dataset"]:
|
117 |
if hasattr(self, ds):
|
118 |
setattr(
|
|
|
120 |
ds,
|
121 |
(
|
122 |
getattr(self, ds).map(
|
123 |
+
partial_preprocess_function,
|
124 |
batched=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
if self.streaming
|
127 |
else getattr(self, ds).map(
|
128 |
+
partial_preprocess_function,
|
129 |
batched=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
remove_columns=getattr(ds, "column_names"),
|
131 |
num_proc=self.preprocessing_num_workers,
|
132 |
load_from_cache_file=not self.overwrite_cache,
|
|
|
220 |
return shifted_input_ids
|
221 |
|
222 |
|
223 |
+
def normalize_function(example, text_column, text_normalizer):
|
224 |
example[text_column] = text_normalizer(example[text_column])
|
225 |
return example
|
226 |
|
dev/seq2seq/run_seq2seq_flax.py
CHANGED
@@ -30,6 +30,7 @@ import json
|
|
30 |
import datasets
|
31 |
from datasets import Dataset
|
32 |
from tqdm import tqdm
|
|
|
33 |
|
34 |
import jax
|
35 |
import jax.numpy as jnp
|
@@ -411,7 +412,9 @@ def main():
|
|
411 |
|
412 |
# Load dataset
|
413 |
dataset = Dataset(
|
414 |
-
**data_args,
|
|
|
|
|
415 |
)
|
416 |
|
417 |
# Set up wandb run
|
@@ -511,7 +514,7 @@ def main():
|
|
511 |
# Preprocessing the datasets.
|
512 |
# We need to normalize and tokenize inputs and targets.
|
513 |
|
514 |
-
dataset
|
515 |
tokenizer=tokenizer,
|
516 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
517 |
normalize_text=model.config.normalize_text,
|
|
|
30 |
import datasets
|
31 |
from datasets import Dataset
|
32 |
from tqdm import tqdm
|
33 |
+
from dataclasses import asdict
|
34 |
|
35 |
import jax
|
36 |
import jax.numpy as jnp
|
|
|
412 |
|
413 |
# Load dataset
|
414 |
dataset = Dataset(
|
415 |
+
**asdict(data_args),
|
416 |
+
do_train=training_args.do_train,
|
417 |
+
do_eval=training_args.do_eval,
|
418 |
)
|
419 |
|
420 |
# Set up wandb run
|
|
|
514 |
# Preprocessing the datasets.
|
515 |
# We need to normalize and tokenize inputs and targets.
|
516 |
|
517 |
+
dataset.preprocess(
|
518 |
tokenizer=tokenizer,
|
519 |
decoder_start_token_id=model.config.decoder_start_token_id,
|
520 |
normalize_text=model.config.normalize_text,
|