Spaces:
Runtime error
Runtime error
refactor: move to tools
Browse files- dev/inference/README.md +0 -1
- dev/inference/wandb-examples-from-backend.py +0 -76
- dev/inference/wandb-examples.py +0 -163
- {dev → tools}/inference/inference_pipeline.ipynb +0 -0
- dev/inference/wandb-backend.ipynb → tools/inference/log_inference_samples.ipynb +0 -0
- {dev → tools}/inference/samples.txt +0 -0
dev/inference/README.md
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Scripts to generate predictions for assessment and reporting.
|
|
|
|
dev/inference/wandb-examples-from-backend.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from PIL import Image, ImageDraw, ImageFont
|
5 |
-
import wandb
|
6 |
-
import os
|
7 |
-
|
8 |
-
from dalle_mini.backend import ServiceError, get_images_from_backend
|
9 |
-
from dalle_mini.helpers import captioned_strip
|
10 |
-
|
11 |
-
os.environ["WANDB_SILENT"] = "true"
|
12 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
13 |
-
|
14 |
-
def log_to_wandb(prompts):
|
15 |
-
try:
|
16 |
-
backend_url = os.environ["BACKEND_SERVER"]
|
17 |
-
for _ in range(1):
|
18 |
-
for prompt in prompts:
|
19 |
-
print(f"Getting selections for: {prompt}")
|
20 |
-
# make a separate run per prompt
|
21 |
-
with wandb.init(
|
22 |
-
entity='wandb',
|
23 |
-
project='hf-flax-dalle-mini',
|
24 |
-
job_type='predictions',# tags=['openai'],
|
25 |
-
config={'prompt': prompt}
|
26 |
-
):
|
27 |
-
imgs = []
|
28 |
-
selected = get_images_from_backend(prompt, backend_url)
|
29 |
-
strip = captioned_strip(selected, prompt)
|
30 |
-
imgs.append(wandb.Image(strip))
|
31 |
-
wandb.log({"images": imgs})
|
32 |
-
except ServiceError as error:
|
33 |
-
print(f"Service unavailable, status: {error.status_code}")
|
34 |
-
except KeyError:
|
35 |
-
print("Error: BACKEND_SERVER unset")
|
36 |
-
|
37 |
-
prompts = [
|
38 |
-
# "white snow covered mountain under blue sky during daytime",
|
39 |
-
# "aerial view of beach during daytime",
|
40 |
-
# "aerial view of beach at night",
|
41 |
-
# "a farmhouse surrounded by beautiful flowers",
|
42 |
-
# "an armchair in the shape of an avocado",
|
43 |
-
# "young woman riding her bike trough a forest",
|
44 |
-
# "a unicorn is passing by a rainbow in a field of flowers",
|
45 |
-
# "illustration of a baby shark swimming around corals",
|
46 |
-
# "painting of an oniric forest glade surrounded by tall trees",
|
47 |
-
# "sunset over green mountains",
|
48 |
-
# "a forest glade surrounded by tall trees in a sunny Spring morning",
|
49 |
-
# "fishing village under the moonlight in a serene sunset",
|
50 |
-
# "cartoon of a carrot with big eyes",
|
51 |
-
# "still life in the style of Kandinsky",
|
52 |
-
# "still life in the style of Picasso",
|
53 |
-
# "a graphite sketch of a gothic cathedral",
|
54 |
-
# "a graphite sketch of Elon Musk",
|
55 |
-
# "a watercolor pond with green leaves and yellow flowers",
|
56 |
-
# "a logo of a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps",
|
57 |
-
# "happy celebration in a small village in Africa",
|
58 |
-
# "a logo of an armchair in the shape of an avocado"
|
59 |
-
# "Pele and Maradona in a hypothetical match",
|
60 |
-
# "Mohammed Ali and Mike Tyson in a hypothetical match",
|
61 |
-
# "a storefront that has the word 'openai' written on it",
|
62 |
-
# "a pentagonal green clock",
|
63 |
-
# "a collection of glasses is sitting on a table",
|
64 |
-
# "a small red block sitting on a large green block",
|
65 |
-
# "an extreme close-up view of a capybara sitting in a field",
|
66 |
-
# "a cross-section view of a walnut",
|
67 |
-
# "a professional high-quality emoji of a lovestruck cup of boba",
|
68 |
-
# "a photo of san francisco's golden gate bridge",
|
69 |
-
# "an illustration of a baby daikon radish in a tutu walking a dog",
|
70 |
-
# "a picture of the Eiffel tower on the Moon",
|
71 |
-
# "a colorful stairway to heaven",
|
72 |
-
"this is a detailed high-resolution scan of a human brain"
|
73 |
-
]
|
74 |
-
|
75 |
-
for _ in range(1):
|
76 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/inference/wandb-examples.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
import random
|
5 |
-
|
6 |
-
import jax
|
7 |
-
from flax.training.common_utils import shard
|
8 |
-
from flax.jax_utils import replicate, unreplicate
|
9 |
-
|
10 |
-
from transformers.models.bart.modeling_flax_bart import *
|
11 |
-
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
12 |
-
|
13 |
-
import os
|
14 |
-
|
15 |
-
from PIL import Image
|
16 |
-
import numpy as np
|
17 |
-
import matplotlib.pyplot as plt
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torchvision.transforms as T
|
21 |
-
import torchvision.transforms.functional as TF
|
22 |
-
from torchvision.transforms import InterpolationMode
|
23 |
-
|
24 |
-
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
25 |
-
from vqgan_jax.modeling_flax_vqgan import VQModel
|
26 |
-
|
27 |
-
# ## CLIP Scoring
|
28 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
29 |
-
|
30 |
-
import wandb
|
31 |
-
import os
|
32 |
-
|
33 |
-
from dalle_mini.helpers import captioned_strip
|
34 |
-
|
35 |
-
|
36 |
-
os.environ["WANDB_SILENT"] = "true"
|
37 |
-
os.environ["WANDB_CONSOLE"] = "off"
|
38 |
-
|
39 |
-
# TODO: used for legacy support
|
40 |
-
BASE_MODEL = 'facebook/bart-large-cnn'
|
41 |
-
|
42 |
-
# set id to None so our latest images don't get overwritten
|
43 |
-
id = None
|
44 |
-
run = wandb.init(id=id,
|
45 |
-
entity='wandb',
|
46 |
-
project="hf-flax-dalle-mini",
|
47 |
-
job_type="predictions",
|
48 |
-
resume="allow"
|
49 |
-
)
|
50 |
-
artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-4oh3u7ca:latest', type='bart_model')
|
51 |
-
artifact_dir = artifact.download()
|
52 |
-
|
53 |
-
# create our model
|
54 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
55 |
-
|
56 |
-
# TODO: legacy support (earlier models)
|
57 |
-
tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)
|
58 |
-
model.config.force_bos_token_to_be_generated = False
|
59 |
-
model.config.forced_bos_token_id = None
|
60 |
-
model.config.forced_eos_token_id = None
|
61 |
-
|
62 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
63 |
-
|
64 |
-
def custom_to_pil(x):
|
65 |
-
x = np.clip(x, 0., 1.)
|
66 |
-
x = (255*x).astype(np.uint8)
|
67 |
-
x = Image.fromarray(x)
|
68 |
-
if not x.mode == "RGB":
|
69 |
-
x = x.convert("RGB")
|
70 |
-
return x
|
71 |
-
|
72 |
-
def generate(input, rng, params):
|
73 |
-
return model.generate(
|
74 |
-
**input,
|
75 |
-
max_length=257,
|
76 |
-
num_beams=1,
|
77 |
-
do_sample=True,
|
78 |
-
prng_key=rng,
|
79 |
-
eos_token_id=50000,
|
80 |
-
pad_token_id=50000,
|
81 |
-
params=params,
|
82 |
-
)
|
83 |
-
|
84 |
-
def get_images(indices, params):
|
85 |
-
return vqgan.decode_code(indices, params=params)
|
86 |
-
|
87 |
-
def plot_images(images):
|
88 |
-
fig = plt.figure(figsize=(40, 20))
|
89 |
-
columns = 4
|
90 |
-
rows = 2
|
91 |
-
plt.subplots_adjust(hspace=0, wspace=0)
|
92 |
-
|
93 |
-
for i in range(1, columns*rows +1):
|
94 |
-
fig.add_subplot(rows, columns, i)
|
95 |
-
plt.imshow(images[i-1])
|
96 |
-
plt.gca().axes.get_yaxis().set_visible(False)
|
97 |
-
plt.show()
|
98 |
-
|
99 |
-
def stack_reconstructions(images):
|
100 |
-
w, h = images[0].size[0], images[0].size[1]
|
101 |
-
img = Image.new("RGB", (len(images)*w, h))
|
102 |
-
for i, img_ in enumerate(images):
|
103 |
-
img.paste(img_, (i*w,0))
|
104 |
-
return img
|
105 |
-
|
106 |
-
p_generate = jax.pmap(generate, "batch")
|
107 |
-
p_get_images = jax.pmap(get_images, "batch")
|
108 |
-
|
109 |
-
bart_params = replicate(model.params)
|
110 |
-
vqgan_params = replicate(vqgan.params)
|
111 |
-
|
112 |
-
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
113 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
114 |
-
|
115 |
-
def hallucinate(prompt, num_images=64):
|
116 |
-
prompt = [prompt] * jax.device_count()
|
117 |
-
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
118 |
-
inputs = shard(inputs)
|
119 |
-
|
120 |
-
all_images = []
|
121 |
-
for i in range(num_images // jax.device_count()):
|
122 |
-
key = random.randint(0, 1e7)
|
123 |
-
rng = jax.random.PRNGKey(key)
|
124 |
-
rngs = jax.random.split(rng, jax.local_device_count())
|
125 |
-
indices = p_generate(inputs, rngs, bart_params).sequences
|
126 |
-
indices = indices[:, :, 1:]
|
127 |
-
|
128 |
-
images = p_get_images(indices, vqgan_params)
|
129 |
-
images = np.squeeze(np.asarray(images), 1)
|
130 |
-
for image in images:
|
131 |
-
all_images.append(custom_to_pil(image))
|
132 |
-
return all_images
|
133 |
-
|
134 |
-
def clip_top_k(prompt, images, k=8):
|
135 |
-
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
136 |
-
# FIXME: image should be resized and normalized prior to being processed by CLIP
|
137 |
-
outputs = clip(**inputs)
|
138 |
-
logits = outputs.logits_per_text
|
139 |
-
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
140 |
-
return [images[score] for score in scores]
|
141 |
-
|
142 |
-
def log_to_wandb(prompts):
|
143 |
-
strips = []
|
144 |
-
for prompt in prompts:
|
145 |
-
print(f"Generating candidates for: {prompt}")
|
146 |
-
images = hallucinate(prompt, num_images=32)
|
147 |
-
selected = clip_top_k(prompt, images, k=8)
|
148 |
-
strip = captioned_strip(selected, prompt)
|
149 |
-
strips.append(wandb.Image(strip))
|
150 |
-
wandb.log({"images": strips})
|
151 |
-
|
152 |
-
prompts = prompts = [
|
153 |
-
"white snow covered mountain under blue sky during daytime",
|
154 |
-
"aerial view of beach during daytime",
|
155 |
-
"aerial view of beach at night",
|
156 |
-
"an armchair in the shape of an avocado",
|
157 |
-
"young woman riding her bike trough a forest",
|
158 |
-
"rice fields by the mediterranean coast",
|
159 |
-
"white houses on the hill of a greek coastline",
|
160 |
-
"illustration of a shark with a baby shark",
|
161 |
-
]
|
162 |
-
|
163 |
-
log_to_wandb(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{dev → tools}/inference/inference_pipeline.ipynb
RENAMED
File without changes
|
dev/inference/wandb-backend.ipynb → tools/inference/log_inference_samples.ipynb
RENAMED
File without changes
|
{dev → tools}/inference/samples.txt
RENAMED
File without changes
|