Spaces:
Runtime error
Runtime error
add gradio demo
Browse filesFormer-commit-id: 48d2ce6a3bd938e048e71ac00cbacd4608a7ee52
- app/app_gradio.py +194 -0
- app/requirements.txt → requirements.txt +2 -0
app/app_gradio.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# Uncomment to run on cpu
|
5 |
+
#import os
|
6 |
+
#os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
7 |
+
|
8 |
+
import random
|
9 |
+
|
10 |
+
import jax
|
11 |
+
import flax.linen as nn
|
12 |
+
from flax.training.common_utils import shard
|
13 |
+
from flax.jax_utils import replicate, unreplicate
|
14 |
+
|
15 |
+
from transformers.models.bart.modeling_flax_bart import *
|
16 |
+
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
17 |
+
|
18 |
+
|
19 |
+
import requests
|
20 |
+
from PIL import Image
|
21 |
+
import numpy as np
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
|
24 |
+
|
25 |
+
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
26 |
+
|
27 |
+
import gradio as gr
|
28 |
+
|
29 |
+
|
30 |
+
# TODO: set those args in a config file
|
31 |
+
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
32 |
+
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
33 |
+
BOS_TOKEN_ID = 16384
|
34 |
+
BASE_MODEL = 'flax-community/dalle-mini'
|
35 |
+
|
36 |
+
class CustomFlaxBartModule(FlaxBartModule):
|
37 |
+
def setup(self):
|
38 |
+
# we keep shared to easily load pre-trained weights
|
39 |
+
self.shared = nn.Embed(
|
40 |
+
self.config.vocab_size,
|
41 |
+
self.config.d_model,
|
42 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
43 |
+
dtype=self.dtype,
|
44 |
+
)
|
45 |
+
# a separate embedding is used for the decoder
|
46 |
+
self.decoder_embed = nn.Embed(
|
47 |
+
OUTPUT_VOCAB_SIZE,
|
48 |
+
self.config.d_model,
|
49 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
50 |
+
dtype=self.dtype,
|
51 |
+
)
|
52 |
+
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
53 |
+
|
54 |
+
# the decoder has a different config
|
55 |
+
decoder_config = BartConfig(self.config.to_dict())
|
56 |
+
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
57 |
+
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
58 |
+
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
59 |
+
|
60 |
+
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
61 |
+
def setup(self):
|
62 |
+
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
63 |
+
self.lm_head = nn.Dense(
|
64 |
+
OUTPUT_VOCAB_SIZE,
|
65 |
+
use_bias=False,
|
66 |
+
dtype=self.dtype,
|
67 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
68 |
+
)
|
69 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
70 |
+
|
71 |
+
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
72 |
+
module_class = CustomFlaxBartForConditionalGenerationModule
|
73 |
+
|
74 |
+
# create our model
|
75 |
+
# FIXME: Save tokenizer to hub so we can load from there
|
76 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
77 |
+
model = CustomFlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)
|
78 |
+
model.config.force_bos_token_to_be_generated = False
|
79 |
+
model.config.forced_bos_token_id = None
|
80 |
+
model.config.forced_eos_token_id = None
|
81 |
+
|
82 |
+
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
83 |
+
|
84 |
+
def custom_to_pil(x):
|
85 |
+
x = np.clip(x, 0., 1.)
|
86 |
+
x = (255*x).astype(np.uint8)
|
87 |
+
x = Image.fromarray(x)
|
88 |
+
if not x.mode == "RGB":
|
89 |
+
x = x.convert("RGB")
|
90 |
+
return x
|
91 |
+
|
92 |
+
def generate(input, rng, params):
|
93 |
+
return model.generate(
|
94 |
+
**input,
|
95 |
+
max_length=257,
|
96 |
+
num_beams=1,
|
97 |
+
do_sample=True,
|
98 |
+
prng_key=rng,
|
99 |
+
eos_token_id=50000,
|
100 |
+
pad_token_id=50000,
|
101 |
+
params=params,
|
102 |
+
)
|
103 |
+
|
104 |
+
def get_images(indices, params):
|
105 |
+
return vqgan.decode_code(indices, params=params)
|
106 |
+
|
107 |
+
def plot_images(images):
|
108 |
+
fig = plt.figure(figsize=(40, 20))
|
109 |
+
columns = 4
|
110 |
+
rows = 2
|
111 |
+
plt.subplots_adjust(hspace=0, wspace=0)
|
112 |
+
|
113 |
+
for i in range(1, columns*rows +1):
|
114 |
+
fig.add_subplot(rows, columns, i)
|
115 |
+
plt.imshow(images[i-1])
|
116 |
+
plt.gca().axes.get_yaxis().set_visible(False)
|
117 |
+
plt.show()
|
118 |
+
|
119 |
+
def stack_reconstructions(images):
|
120 |
+
w, h = images[0].size[0], images[0].size[1]
|
121 |
+
img = Image.new("RGB", (len(images)*w, h))
|
122 |
+
for i, img_ in enumerate(images):
|
123 |
+
img.paste(img_, (i*w,0))
|
124 |
+
return img
|
125 |
+
|
126 |
+
p_generate = jax.pmap(generate, "batch")
|
127 |
+
p_get_images = jax.pmap(get_images, "batch")
|
128 |
+
|
129 |
+
bart_params = replicate(model.params)
|
130 |
+
vqgan_params = replicate(vqgan.params)
|
131 |
+
|
132 |
+
# ## CLIP Scoring
|
133 |
+
from transformers import CLIPProcessor, FlaxCLIPModel
|
134 |
+
|
135 |
+
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
136 |
+
print("Initialize FlaxCLIPModel")
|
137 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
138 |
+
print("Initialize CLIPProcessor")
|
139 |
+
|
140 |
+
def hallucinate(prompt, num_images=64):
|
141 |
+
prompt = [prompt] * jax.device_count()
|
142 |
+
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
143 |
+
inputs = shard(inputs)
|
144 |
+
|
145 |
+
all_images = []
|
146 |
+
for i in range(num_images // jax.device_count()):
|
147 |
+
key = random.randint(0, 1e7)
|
148 |
+
rng = jax.random.PRNGKey(key)
|
149 |
+
rngs = jax.random.split(rng, jax.local_device_count())
|
150 |
+
indices = p_generate(inputs, rngs, bart_params).sequences
|
151 |
+
indices = indices[:, :, 1:]
|
152 |
+
|
153 |
+
images = p_get_images(indices, vqgan_params)
|
154 |
+
images = np.squeeze(np.asarray(images), 1)
|
155 |
+
for image in images:
|
156 |
+
all_images.append(custom_to_pil(image))
|
157 |
+
return all_images
|
158 |
+
|
159 |
+
def clip_top_k(prompt, images, k=8):
|
160 |
+
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
161 |
+
outputs = clip(**inputs)
|
162 |
+
logits = outputs.logits_per_text
|
163 |
+
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
164 |
+
return [images[score] for score in scores]
|
165 |
+
|
166 |
+
def captioned_strip(images, caption):
|
167 |
+
increased_h = 0 if caption is None else 48
|
168 |
+
w, h = images[0].size[0], images[0].size[1]
|
169 |
+
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
170 |
+
for i, img_ in enumerate(images):
|
171 |
+
img.paste(img_, (i*w, increased_h))
|
172 |
+
|
173 |
+
if caption is not None:
|
174 |
+
draw = ImageDraw.Draw(img)
|
175 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
176 |
+
draw.text((20, 3), caption, (255,255,255), font=font)
|
177 |
+
return img
|
178 |
+
|
179 |
+
def run_inference(prompt, num_images=64, num_preds=8):
|
180 |
+
images = hallucinate(prompt, num_images=num_images)
|
181 |
+
images = clip_top_k(prompt, images, k=num_preds)
|
182 |
+
predictions_strip = captioned_strip(images, None)
|
183 |
+
return predictions_strip
|
184 |
+
|
185 |
+
gr.Interface(run_inference,
|
186 |
+
inputs=[gr.inputs.Textbox(label='Prompt')], #, gr.inputs.Slider(1,64,1,8, label='Candidates to generate'), gr.inputs.Slider(1,8,1,1, label='Best predictions to show')],
|
187 |
+
outputs=gr.outputs.Image(label='Generated image'),
|
188 |
+
title='DALLE-mini - HuggingFace Community Week',
|
189 |
+
description='This is a demo of the DALLE-mini model trained with Jax/Flax on TPU v3-8s during the HuggingFace Community Week',
|
190 |
+
article="<p style='text-align: center'> DALLE-mini by Boris Dayma et al. | <a href='https://github.com/borisdayma/dalle-mini'>GitHub</a></p>",
|
191 |
+
layout='vertical',
|
192 |
+
theme='huggingface',
|
193 |
+
examples=[['an armchair in the shape of an avocado']],
|
194 |
+
server_port=8999).launch(share=True)
|
app/requirements.txt → requirements.txt
RENAMED
@@ -9,3 +9,5 @@ flax
|
|
9 |
jupyter
|
10 |
wandb
|
11 |
ftfy
|
|
|
|
|
|
9 |
jupyter
|
10 |
wandb
|
11 |
ftfy
|
12 |
+
streamlit
|
13 |
+
gradio
|