Spaces:
Runtime error
Runtime error
feat: separate model definition
Browse filesFormer-commit-id: c049a9387bdbadc71f5ee9f17d42aa25d6233ebd
- app/app_gradio.py +10 -56
- dalle_mini/model.py +66 -0
app/app_gradio.py
CHANGED
@@ -12,74 +12,28 @@ import flax.linen as nn
|
|
12 |
from flax.training.common_utils import shard
|
13 |
from flax.jax_utils import replicate, unreplicate
|
14 |
|
15 |
-
from transformers.models.bart.modeling_flax_bart import *
|
16 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
17 |
|
18 |
-
|
19 |
-
import requests
|
20 |
from PIL import Image
|
21 |
import numpy as np
|
22 |
import matplotlib.pyplot as plt
|
23 |
|
24 |
|
25 |
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
|
|
26 |
|
27 |
import gradio as gr
|
28 |
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
self.shared = nn.Embed(
|
40 |
-
self.config.vocab_size,
|
41 |
-
self.config.d_model,
|
42 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
43 |
-
dtype=self.dtype,
|
44 |
-
)
|
45 |
-
# a separate embedding is used for the decoder
|
46 |
-
self.decoder_embed = nn.Embed(
|
47 |
-
OUTPUT_VOCAB_SIZE,
|
48 |
-
self.config.d_model,
|
49 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
50 |
-
dtype=self.dtype,
|
51 |
-
)
|
52 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
53 |
-
|
54 |
-
# the decoder has a different config
|
55 |
-
decoder_config = BartConfig(self.config.to_dict())
|
56 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
57 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
58 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
59 |
-
|
60 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
61 |
-
def setup(self):
|
62 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
63 |
-
self.lm_head = nn.Dense(
|
64 |
-
OUTPUT_VOCAB_SIZE,
|
65 |
-
use_bias=False,
|
66 |
-
dtype=self.dtype,
|
67 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
68 |
-
)
|
69 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
70 |
-
|
71 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
72 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
73 |
-
|
74 |
-
# create our model
|
75 |
-
# FIXME: Save tokenizer to hub so we can load from there
|
76 |
-
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
77 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)
|
78 |
-
model.config.force_bos_token_to_be_generated = False
|
79 |
-
model.config.forced_bos_token_id = None
|
80 |
-
model.config.forced_eos_token_id = None
|
81 |
-
|
82 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
83 |
|
84 |
def custom_to_pil(x):
|
85 |
x = np.clip(x, 0., 1.)
|
|
|
12 |
from flax.training.common_utils import shard
|
13 |
from flax.jax_utils import replicate, unreplicate
|
14 |
|
|
|
15 |
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
16 |
|
|
|
|
|
17 |
from PIL import Image
|
18 |
import numpy as np
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
|
22 |
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
23 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
24 |
|
25 |
import gradio as gr
|
26 |
|
27 |
|
28 |
+
DALLE_REPO = 'flax-community/dalle-mini'
|
29 |
+
DALLE_COMMIT_ID = '4d34126d0df8bc4a692ae933e3b902a1fa8b6114'
|
30 |
+
|
31 |
+
VQGAN_REPO = 'flax-community/vqgan_f16_16384'
|
32 |
+
VQGAN_COMMIT_ID = '90cc46addd2dd8f5be21586a9a23e1b95aa506a9'
|
33 |
+
|
34 |
+
tokenizer = BartTokenizer.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
|
35 |
+
model = CustomFlaxBartForConditionalGeneration.from_pretrained(DALLE_REPO, revision=DALLE_COMMIT_ID)
|
36 |
+
vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def custom_to_pil(x):
|
39 |
x = np.clip(x, 0., 1.)
|
dalle_mini/model.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import jax
|
3 |
+
import flax.linen as nn
|
4 |
+
|
5 |
+
from transformers.models.bart.modeling_flax_bart import (
|
6 |
+
FlaxBartModule,
|
7 |
+
FlaxBartForConditionalGenerationModule,
|
8 |
+
FlaxBartForConditionalGeneration,
|
9 |
+
FlaxBartEncoder,
|
10 |
+
FlaxBartDecoder
|
11 |
+
)
|
12 |
+
|
13 |
+
from transformers import BartConfig
|
14 |
+
|
15 |
+
|
16 |
+
# Model hyperparameters, for convenience
|
17 |
+
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
18 |
+
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
19 |
+
BOS_TOKEN_ID = 16384
|
20 |
+
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
|
21 |
+
|
22 |
+
|
23 |
+
class CustomFlaxBartModule(FlaxBartModule):
|
24 |
+
def setup(self):
|
25 |
+
# check config is valid, otherwise set default values
|
26 |
+
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
27 |
+
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
|
28 |
+
|
29 |
+
# we keep shared to easily load pre-trained weights
|
30 |
+
self.shared = nn.Embed(
|
31 |
+
self.config.vocab_size,
|
32 |
+
self.config.d_model,
|
33 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
34 |
+
dtype=self.dtype,
|
35 |
+
)
|
36 |
+
# a separate embedding is used for the decoder
|
37 |
+
self.decoder_embed = nn.Embed(
|
38 |
+
self.config.vocab_size_output,
|
39 |
+
self.config.d_model,
|
40 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
41 |
+
dtype=self.dtype,
|
42 |
+
)
|
43 |
+
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
44 |
+
|
45 |
+
# the decoder has a different config
|
46 |
+
decoder_config = BartConfig(self.config.to_dict())
|
47 |
+
decoder_config.max_position_embeddings = self.config.max_position_embeddings_decoder
|
48 |
+
decoder_config.vocab_size = self.config.vocab_size_output
|
49 |
+
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
50 |
+
|
51 |
+
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
52 |
+
def setup(self):
|
53 |
+
# check config is valid, otherwise set default values
|
54 |
+
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
55 |
+
|
56 |
+
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
57 |
+
self.lm_head = nn.Dense(
|
58 |
+
self.config.vocab_size_output,
|
59 |
+
use_bias=False,
|
60 |
+
dtype=self.dtype,
|
61 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
62 |
+
)
|
63 |
+
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.config.vocab_size_output))
|
64 |
+
|
65 |
+
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
66 |
+
module_class = CustomFlaxBartForConditionalGenerationModule
|