Spaces:
Runtime error
Runtime error
refactor: loop over runs
Browse files- dev/inference/wandb-backend.ipynb +98 -229
dev/inference/wandb-backend.ipynb
CHANGED
@@ -13,6 +13,7 @@
|
|
13 |
"import random\n",
|
14 |
"import numpy as np\n",
|
15 |
"from PIL import Image\n",
|
|
|
16 |
"import jax\n",
|
17 |
"import jax.numpy as jnp\n",
|
18 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
@@ -47,18 +48,10 @@
|
|
47 |
"num_images = 128\n",
|
48 |
"top_k = 8\n",
|
49 |
"text_normalizer = TextNormalizer() if normalize_text else None\n",
|
50 |
-
"padding_item = 'NONE'"
|
51 |
-
]
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"cell_type": "code",
|
55 |
-
"execution_count": null,
|
56 |
-
"id": "6a045827-3461-4499-8959-38d173bc4e5e",
|
57 |
-
"metadata": {},
|
58 |
-
"outputs": [],
|
59 |
-
"source": [
|
60 |
"seed = random.randint(0, 2**32-1)\n",
|
61 |
-
"key = jax.random.PRNGKey(seed)"
|
|
|
62 |
]
|
63 |
},
|
64 |
{
|
@@ -70,18 +63,26 @@
|
|
70 |
"source": [
|
71 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
72 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
73 |
-
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")"
|
|
|
|
|
74 |
]
|
75 |
},
|
76 |
{
|
77 |
"cell_type": "code",
|
78 |
"execution_count": null,
|
79 |
-
"id": "
|
80 |
"metadata": {},
|
81 |
"outputs": [],
|
82 |
"source": [
|
83 |
-
"
|
84 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
]
|
86 |
},
|
87 |
{
|
@@ -103,36 +104,6 @@
|
|
103 |
" samples = [samples[i:i+batch_size] for i in range(0, len(samples), batch_size)]"
|
104 |
]
|
105 |
},
|
106 |
-
{
|
107 |
-
"cell_type": "code",
|
108 |
-
"execution_count": null,
|
109 |
-
"id": "f75b2869-fc25-4f56-b937-e97bbb712ede",
|
110 |
-
"metadata": {},
|
111 |
-
"outputs": [],
|
112 |
-
"source": [
|
113 |
-
"len(samples)"
|
114 |
-
]
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"cell_type": "code",
|
118 |
-
"execution_count": null,
|
119 |
-
"id": "c48525c9-447a-4430-81d7-4b699f545638",
|
120 |
-
"metadata": {},
|
121 |
-
"outputs": [],
|
122 |
-
"source": [
|
123 |
-
"samples[-1]"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"cell_type": "code",
|
128 |
-
"execution_count": null,
|
129 |
-
"id": "a2c629e9-1a82-40c6-a260-ca1780c19a2e",
|
130 |
-
"metadata": {},
|
131 |
-
"outputs": [],
|
132 |
-
"source": [
|
133 |
-
"api = wandb.Api()"
|
134 |
-
]
|
135 |
-
},
|
136 |
{
|
137 |
"cell_type": "code",
|
138 |
"execution_count": null,
|
@@ -142,7 +113,7 @@
|
|
142 |
"source": [
|
143 |
"# TODO: iterate on runs\n",
|
144 |
"wandb_run = wandb_runs[0]\n",
|
145 |
-
"
|
146 |
]
|
147 |
},
|
148 |
{
|
@@ -152,60 +123,12 @@
|
|
152 |
"metadata": {},
|
153 |
"outputs": [],
|
154 |
"source": [
|
155 |
-
"
|
156 |
-
"
|
157 |
-
"
|
158 |
-
"
|
159 |
-
|
160 |
-
|
161 |
-
{
|
162 |
-
"cell_type": "code",
|
163 |
-
"execution_count": null,
|
164 |
-
"id": "e8026e63-9e73-472c-9440-5e742c614901",
|
165 |
-
"metadata": {},
|
166 |
-
"outputs": [],
|
167 |
-
"source": [
|
168 |
-
"versions, len(versions)"
|
169 |
-
]
|
170 |
-
},
|
171 |
-
{
|
172 |
-
"cell_type": "code",
|
173 |
-
"execution_count": null,
|
174 |
-
"id": "ead44aee-52d5-4ca2-8984-c4d267d9e72a",
|
175 |
-
"metadata": {},
|
176 |
-
"outputs": [],
|
177 |
-
"source": [
|
178 |
-
"versions[0].version"
|
179 |
-
]
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"cell_type": "code",
|
183 |
-
"execution_count": null,
|
184 |
-
"id": "cfd48de9-6022-444f-8b12-05cba8fad071",
|
185 |
-
"metadata": {},
|
186 |
-
"outputs": [],
|
187 |
-
"source": [
|
188 |
-
"artifact = versions[0]"
|
189 |
-
]
|
190 |
-
},
|
191 |
-
{
|
192 |
-
"cell_type": "code",
|
193 |
-
"execution_count": null,
|
194 |
-
"id": "4db848c1-2bb5-432c-a732-1c6d0636e172",
|
195 |
-
"metadata": {},
|
196 |
-
"outputs": [],
|
197 |
-
"source": [
|
198 |
-
"version = int(artifact.version[1:])"
|
199 |
-
]
|
200 |
-
},
|
201 |
-
{
|
202 |
-
"cell_type": "code",
|
203 |
-
"execution_count": null,
|
204 |
-
"id": "25fac577-146d-4e62-a3ea-f0baea79ef83",
|
205 |
-
"metadata": {},
|
206 |
-
"outputs": [],
|
207 |
-
"source": [
|
208 |
-
"version"
|
209 |
]
|
210 |
},
|
211 |
{
|
@@ -215,20 +138,10 @@
|
|
215 |
"metadata": {},
|
216 |
"outputs": [],
|
217 |
"source": [
|
218 |
-
"
|
219 |
-
"training_run = api.run(f'dalle-mini/dalle-mini/{
|
220 |
-
"config = training_run.config"
|
221 |
-
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"cell_type": "code",
|
225 |
-
"execution_count": null,
|
226 |
-
"id": "9b9393c6-0a3c-46a8-ba27-ba37982b0009",
|
227 |
-
"metadata": {},
|
228 |
-
"outputs": [],
|
229 |
-
"source": [
|
230 |
-
"# see summary metrics\n",
|
231 |
-
"training_run.summary"
|
232 |
]
|
233 |
},
|
234 |
{
|
@@ -239,7 +152,7 @@
|
|
239 |
"outputs": [],
|
240 |
"source": [
|
241 |
"# retrieve inference run details\n",
|
242 |
-
"def
|
243 |
" try:\n",
|
244 |
" inference_run = api.run(f'dalle-mini/dalle-mini/inference-{run_id}')\n",
|
245 |
" return inference_run.summary.get('_step', None)\n",
|
@@ -250,147 +163,103 @@
|
|
250 |
{
|
251 |
"cell_type": "code",
|
252 |
"execution_count": null,
|
253 |
-
"id": "
|
254 |
-
"metadata": {},
|
255 |
-
"outputs": [],
|
256 |
-
"source": [
|
257 |
-
"last_version_inference = get_last_version_inference(wandb_run)"
|
258 |
-
]
|
259 |
-
},
|
260 |
-
{
|
261 |
-
"cell_type": "code",
|
262 |
-
"execution_count": null,
|
263 |
-
"id": "8324835e-fd94-408e-b106-138be308480b",
|
264 |
-
"metadata": {},
|
265 |
-
"outputs": [],
|
266 |
-
"source": [
|
267 |
-
"if last_version_inference is None:\n",
|
268 |
-
" assert version == 0\n",
|
269 |
-
"elif last_version_inference >= version:\n",
|
270 |
-
" print(f'Version {version} has already been logged')\n",
|
271 |
-
"else:\n",
|
272 |
-
" assert version == last_version_inference + 1"
|
273 |
-
]
|
274 |
-
},
|
275 |
-
{
|
276 |
-
"cell_type": "code",
|
277 |
-
"execution_count": null,
|
278 |
-
"id": "8ce9d2d3-aea3-4d5e-834a-c5caf85dd117",
|
279 |
-
"metadata": {},
|
280 |
-
"outputs": [],
|
281 |
-
"source": [
|
282 |
-
"run = wandb.init(job_type='inference', config=config, id=f'inference-{wandb_run}', resume='allow')"
|
283 |
-
]
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"cell_type": "code",
|
287 |
-
"execution_count": null,
|
288 |
-
"id": "ffe392c9-36d2-4aaa-a1b3-a827e348c1ef",
|
289 |
-
"metadata": {},
|
290 |
-
"outputs": [],
|
291 |
-
"source": [
|
292 |
-
"tmp_f.cleanup\n",
|
293 |
-
"tmp_f = tempfile.TemporaryDirectory()\n",
|
294 |
-
"tmp = tmp_f.name\n",
|
295 |
-
"#TODO: use context manager"
|
296 |
-
]
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"cell_type": "code",
|
300 |
-
"execution_count": null,
|
301 |
-
"id": "562036ed-dc86-48af-90b1-9c18383b3552",
|
302 |
-
"metadata": {},
|
303 |
-
"outputs": [],
|
304 |
-
"source": [
|
305 |
-
"# remove tmp\n",
|
306 |
-
"tmp_f.cleanup()"
|
307 |
-
]
|
308 |
-
},
|
309 |
-
{
|
310 |
-
"cell_type": "code",
|
311 |
-
"execution_count": null,
|
312 |
-
"id": "299db1bb-fbe6-4d79-a48f-89893f8ed809",
|
313 |
-
"metadata": {},
|
314 |
-
"outputs": [],
|
315 |
-
"source": [
|
316 |
-
"artifact = run.use_artifact(artifact)"
|
317 |
-
]
|
318 |
-
},
|
319 |
-
{
|
320 |
-
"cell_type": "code",
|
321 |
-
"execution_count": null,
|
322 |
-
"id": "d71481bf-98aa-42cb-b7e2-545d13ae4309",
|
323 |
-
"metadata": {},
|
324 |
-
"outputs": [],
|
325 |
-
"source": [
|
326 |
-
"# only download required files\n",
|
327 |
-
"for f in ['config.json', 'flax_model.msgpack', 'merges.txt', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json', 'vocab.json']:\n",
|
328 |
-
" artifact.get_path(f).download(tmp)"
|
329 |
-
]
|
330 |
-
},
|
331 |
-
{
|
332 |
-
"cell_type": "code",
|
333 |
-
"execution_count": null,
|
334 |
-
"id": "6f8ad8dd-da8f-40f9-b438-e43b779d637c",
|
335 |
"metadata": {},
|
336 |
"outputs": [],
|
337 |
"source": [
|
338 |
-
"#
|
339 |
-
"
|
340 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
]
|
342 |
},
|
343 |
{
|
344 |
"cell_type": "code",
|
345 |
"execution_count": null,
|
346 |
-
"id": "
|
347 |
"metadata": {},
|
348 |
"outputs": [],
|
349 |
"source": [
|
350 |
-
"
|
351 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
]
|
353 |
},
|
354 |
{
|
355 |
"cell_type": "code",
|
356 |
"execution_count": null,
|
357 |
-
"id": "
|
358 |
"metadata": {},
|
359 |
"outputs": [],
|
360 |
"source": [
|
361 |
-
"
|
362 |
]
|
363 |
},
|
364 |
{
|
365 |
"cell_type": "code",
|
366 |
"execution_count": null,
|
367 |
-
"id": "
|
368 |
"metadata": {},
|
369 |
"outputs": [],
|
370 |
"source": [
|
371 |
-
"
|
372 |
-
"
|
373 |
-
"
|
374 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
375 |
-
" def p_generate(tokenized_prompt, key, params):\n",
|
376 |
-
" return model.generate(\n",
|
377 |
-
" **tokenized_prompt,\n",
|
378 |
-
" do_sample=True,\n",
|
379 |
-
" num_beams=1,\n",
|
380 |
-
" prng_key=key,\n",
|
381 |
-
" params=params\n",
|
382 |
-
" )\n",
|
383 |
-
" \n",
|
384 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
385 |
-
" def p_decode(indices, params):\n",
|
386 |
-
" return vqgan.decode_code(indices, params=params)\n",
|
387 |
-
" \n",
|
388 |
-
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
389 |
-
" def p_clip(inputs):\n",
|
390 |
-
" logits = clip(**inputs).logits_per_image\n",
|
391 |
-
" return logits\n",
|
392 |
-
" \n",
|
393 |
-
" functions_pmapped = False"
|
394 |
]
|
395 |
},
|
396 |
{
|
|
|
13 |
"import random\n",
|
14 |
"import numpy as np\n",
|
15 |
"from PIL import Image\n",
|
16 |
+
"from tqdm import tqdm\n",
|
17 |
"import jax\n",
|
18 |
"import jax.numpy as jnp\n",
|
19 |
"from flax.training.common_utils import shard, shard_prng_key\n",
|
|
|
48 |
"num_images = 128\n",
|
49 |
"top_k = 8\n",
|
50 |
"text_normalizer = TextNormalizer() if normalize_text else None\n",
|
51 |
+
"padding_item = 'NONE'\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
"seed = random.randint(0, 2**32-1)\n",
|
53 |
+
"key = jax.random.PRNGKey(seed)\n",
|
54 |
+
"api = wandb.Api()"
|
55 |
]
|
56 |
},
|
57 |
{
|
|
|
63 |
"source": [
|
64 |
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
65 |
"clip = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
66 |
+
"processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
|
67 |
+
"clip_params = replicate(clip.params)\n",
|
68 |
+
"vqgan_params = replicate(vqgan.params)"
|
69 |
]
|
70 |
},
|
71 |
{
|
72 |
"cell_type": "code",
|
73 |
"execution_count": null,
|
74 |
+
"id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
|
75 |
"metadata": {},
|
76 |
"outputs": [],
|
77 |
"source": [
|
78 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
79 |
+
"def p_decode(indices, params):\n",
|
80 |
+
" return vqgan.decode_code(indices, params=params)\n",
|
81 |
+
"\n",
|
82 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
83 |
+
"def p_clip(inputs):\n",
|
84 |
+
" logits = clip(**inputs).logits_per_image\n",
|
85 |
+
" return logits"
|
86 |
]
|
87 |
},
|
88 |
{
|
|
|
104 |
" samples = [samples[i:i+batch_size] for i in range(0, len(samples), batch_size)]"
|
105 |
]
|
106 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
{
|
108 |
"cell_type": "code",
|
109 |
"execution_count": null,
|
|
|
113 |
"source": [
|
114 |
"# TODO: iterate on runs\n",
|
115 |
"wandb_run = wandb_runs[0]\n",
|
116 |
+
"model_pmapped = False"
|
117 |
]
|
118 |
},
|
119 |
{
|
|
|
123 |
"metadata": {},
|
124 |
"outputs": [],
|
125 |
"source": [
|
126 |
+
"def get_artifact_versions(run_id):\n",
|
127 |
+
" try:\n",
|
128 |
+
" versions = api.artifact_versions(type_name='bart_model', name=f'dalle-mini/dalle-mini/model-{run_id}', per_page=10000)\n",
|
129 |
+
" except:\n",
|
130 |
+
" versions = []\n",
|
131 |
+
" return versions"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
]
|
133 |
},
|
134 |
{
|
|
|
138 |
"metadata": {},
|
139 |
"outputs": [],
|
140 |
"source": [
|
141 |
+
"def get_training_config(run_id):\n",
|
142 |
+
" training_run = api.run(f'dalle-mini/dalle-mini/{run_id}')\n",
|
143 |
+
" config = training_run.config\n",
|
144 |
+
" return config"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
]
|
146 |
},
|
147 |
{
|
|
|
152 |
"outputs": [],
|
153 |
"source": [
|
154 |
"# retrieve inference run details\n",
|
155 |
+
"def get_last_inference_version(run_id):\n",
|
156 |
" try:\n",
|
157 |
" inference_run = api.run(f'dalle-mini/dalle-mini/inference-{run_id}')\n",
|
158 |
" return inference_run.summary.get('_step', None)\n",
|
|
|
163 |
{
|
164 |
"cell_type": "code",
|
165 |
"execution_count": null,
|
166 |
+
"id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
"metadata": {},
|
168 |
"outputs": [],
|
169 |
"source": [
|
170 |
+
"# compile functions - needed only once per run\n",
|
171 |
+
"def pmap_model_function(model):\n",
|
172 |
+
" \n",
|
173 |
+
" @partial(jax.pmap, axis_name=\"batch\")\n",
|
174 |
+
" def _generate(tokenized_prompt, key, params):\n",
|
175 |
+
" return model.generate(\n",
|
176 |
+
" **tokenized_prompt,\n",
|
177 |
+
" do_sample=True,\n",
|
178 |
+
" num_beams=1,\n",
|
179 |
+
" prng_key=key,\n",
|
180 |
+
" params=params\n",
|
181 |
+
" )\n",
|
182 |
+
" \n",
|
183 |
+
" return _generate"
|
184 |
]
|
185 |
},
|
186 |
{
|
187 |
"cell_type": "code",
|
188 |
"execution_count": null,
|
189 |
+
"id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
|
190 |
"metadata": {},
|
191 |
"outputs": [],
|
192 |
"source": [
|
193 |
+
"def log_run(run_id):\n",
|
194 |
+
" artifact_versions = get_artifact_versions(run_id)\n",
|
195 |
+
" last_inference_version = get_last_inference_version(run_id)\n",
|
196 |
+
" training_config = get_training_config(run_id)\n",
|
197 |
+
" run = None\n",
|
198 |
+
" p_generate = None\n",
|
199 |
+
" model_files = ['config.json', 'flax_model.msgpack', 'merges.txt', 'special_tokens_map.json', 'tokenizer.json', 'tokenizer_config.json', 'vocab.json']\n",
|
200 |
+
" for artifact in artifact_versions:\n",
|
201 |
+
" print(f'Processing artifact: {artifact.name}')\n",
|
202 |
+
" version = int(artifact.version[1:])\n",
|
203 |
+
" if last_version_inference is None:\n",
|
204 |
+
" # we should start from v0\n",
|
205 |
+
" assert version == 0\n",
|
206 |
+
" elif version <= last_version_inference:\n",
|
207 |
+
" print(f'v{version} has already been logged (versions logged up to v{last_version_inference}')\n",
|
208 |
+
" else:\n",
|
209 |
+
" # check we are logging the correct version\n",
|
210 |
+
" assert version == last_version_inference + 1\n",
|
211 |
+
" \n",
|
212 |
+
" # start/resume corresponding run\n",
|
213 |
+
" if run is None:\n",
|
214 |
+
" run = wandb.init(job_type='inference', config=config, id=f'inference-{wandb_run}', resume='allow')\n",
|
215 |
+
" \n",
|
216 |
+
" # work in temporary directory\n",
|
217 |
+
" with tempfile.TemporaryDirectory() as tmp:\n",
|
218 |
+
" \n",
|
219 |
+
" # download model files\n",
|
220 |
+
" artifact = run.use_artifact(artifact)\n",
|
221 |
+
" for f in model_files:\n",
|
222 |
+
" artifact.get_path(f).download(tmp)\n",
|
223 |
+
" \n",
|
224 |
+
" # load tokenizer and model\n",
|
225 |
+
" tokenizer = BartTokenizer.from_pretrained(tmp)\n",
|
226 |
+
" model = CustomFlaxBartForConditionalGeneration.from_pretrained(tmp)\n",
|
227 |
+
" model_params = replicate(model.params)\n",
|
228 |
+
" \n",
|
229 |
+
" # pmap model function needs to happen only once per model config\n",
|
230 |
+
" if p_generate is None:\n",
|
231 |
+
" p_generate = pmap_model_function(model)\n",
|
232 |
+
" \n",
|
233 |
+
" for batch in tqdm(samples):\n",
|
234 |
+
" prompts = [x['Caption'] for x in batch]\n",
|
235 |
+
" processed_prompts = [text_normalizer(x) for x in prompts] if normalize_text else prompts\n",
|
236 |
+
" \n",
|
237 |
+
"\n",
|
238 |
+
" \n",
|
239 |
+
" \n",
|
240 |
+
" "
|
241 |
]
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
"execution_count": null,
|
246 |
+
"id": "4d542342-3232-48a5-a0aa-3cb5c157aa8c",
|
247 |
"metadata": {},
|
248 |
"outputs": [],
|
249 |
"source": [
|
250 |
+
"log_run(wandb_run)"
|
251 |
]
|
252 |
},
|
253 |
{
|
254 |
"cell_type": "code",
|
255 |
"execution_count": null,
|
256 |
+
"id": "4e4c7d0c-2848-4f88-b967-82fd571534f1",
|
257 |
"metadata": {},
|
258 |
"outputs": [],
|
259 |
"source": [
|
260 |
+
"def log_runs(runs):\n",
|
261 |
+
" for run in tqdm(runs):\n",
|
262 |
+
" log_run(run)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
]
|
264 |
},
|
265 |
{
|