MMOCR / mmocr /datasets /pipelines /ner_transforms.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmdet.datasets.builder import PIPELINES
from mmocr.models.builder import build_convertor
@PIPELINES.register_module()
class NerTransform:
"""Convert text to ID and entity in ground truth to label ID. The masks and
tokens are generated at the same time. The four parameters will be used as
input to the model.
Args:
label_convertor: Convert text to ID and entity
in ground truth to label ID.
max_len (int): Limited maximum input length.
"""
def __init__(self, label_convertor, max_len):
self.label_convertor = build_convertor(label_convertor)
self.max_len = max_len
def __call__(self, results):
texts = results['text']
input_ids = self.label_convertor.convert_text2id(texts)
labels = self.label_convertor.convert_entity2label(
results['label'], len(texts))
attention_mask = [0] * self.max_len
token_type_ids = [0] * self.max_len
# The beginning and end IDs are added to the ID,
# so the mask length is increased by 2
for i in range(len(texts) + 2):
attention_mask[i] = 1
results = dict(
labels=labels,
texts=texts,
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids)
return results
@PIPELINES.register_module()
class ToTensorNER:
"""Convert data with ``list`` type to tensor."""
def __call__(self, results):
input_ids = torch.tensor(results['input_ids'])
labels = torch.tensor(results['labels'])
attention_masks = torch.tensor(results['attention_mask'])
token_type_ids = torch.tensor(results['token_type_ids'])
results = dict(
img=[],
img_metas=dict(
input_ids=input_ids,
attention_masks=attention_masks,
labels=labels,
token_type_ids=token_type_ids))
return results