tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
from . import BaseTextDetTargets
@PIPELINES.register_module()
class PANetTargets(BaseTextDetTargets):
"""Generate the ground truths for PANet: Efficient and Accurate Arbitrary-
Shaped Text Detection with Pixel Aggregation Network.
[https://arxiv.org/abs/1908.05900]. This code is partially adapted from
https://github.com/WenmuZhou/PAN.pytorch.
Args:
shrink_ratio (tuple[float]): The ratios for shrinking text instances.
max_shrink (int): The maximum shrink distance.
"""
def __init__(self, shrink_ratio=(1.0, 0.5), max_shrink=20):
self.shrink_ratio = shrink_ratio
self.max_shrink = max_shrink
def generate_targets(self, results):
"""Generate the gt targets for PANet.
Args:
results (dict): The input result dictionary.
Returns:
results (dict): The output result dictionary.
"""
assert isinstance(results, dict)
polygon_masks = results['gt_masks'].masks
polygon_masks_ignore = results['gt_masks_ignore'].masks
h, w, _ = results['img_shape']
gt_kernels = []
for ratio in self.shrink_ratio:
mask, _ = self.generate_kernels((h, w),
polygon_masks,
ratio,
max_shrink=self.max_shrink,
ignore_tags=None)
gt_kernels.append(mask)
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
results['mask_fields'].clear() # rm gt_masks encoded by polygons
if 'bbox_fields' in results:
results['bbox_fields'].clear()
results.pop('gt_labels', None)
results.pop('gt_masks', None)
results.pop('gt_bboxes', None)
results.pop('gt_bboxes_ignore', None)
mapping = {'gt_kernels': gt_kernels, 'gt_mask': gt_mask}
for key, value in mapping.items():
value = value if isinstance(value, list) else [value]
results[key] = BitmapMasks(value, h, w)
results['mask_fields'].append(key)
return results