MMOCR / tests /test_dataset /test_ocr_dataset.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import math
import os.path as osp
import tempfile
from mmocr.datasets.ocr_dataset import OCRDataset
def _create_dummy_ann_file(ann_file):
ann_info1 = 'sample1.jpg hello'
ann_info2 = 'sample2.jpg world'
with open(ann_file, 'w') as fw:
for ann_info in [ann_info1, ann_info2]:
fw.write(ann_info + '\n')
def _create_dummy_loader():
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(type='LineStrParser', keys=['file_name', 'text']))
return loader
def test_detect_dataset():
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
ann_file = osp.join(tmp_dir.name, 'fake_data.txt')
_create_dummy_ann_file(ann_file)
# test initialization
loader = _create_dummy_loader()
dataset = OCRDataset(ann_file, loader, pipeline=[])
tmp_dir.cleanup()
# test pre_pipeline
img_info = dataset.data_infos[0]
results = dict(img_info=img_info)
dataset.pre_pipeline(results)
assert results['img_prefix'] == dataset.img_prefix
assert results['text'] == img_info['text']
# test evluation
metric = 'acc'
results = [{'text': 'hello'}, {'text': 'worl'}]
eval_res = dataset.evaluate(results, metric)
assert math.isclose(eval_res['word_acc'], 0.5, abs_tol=1e-4)
assert math.isclose(eval_res['char_precision'], 1.0, abs_tol=1e-4)
assert math.isclose(eval_res['char_recall'], 0.9, abs_tol=1e-4)