MMOCR / tests /test_dataset /test_ocr_seg_dataset.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import json
import math
import os.path as osp
import tempfile
import pytest
from mmocr.datasets.ocr_seg_dataset import OCRSegDataset
def _create_dummy_ann_file(ann_file):
ann_info1 = {
'file_name':
'sample1.png',
'annotations': [{
'char_text':
'F',
'char_box': [11.0, 0.0, 22.0, 0.0, 12.0, 12.0, 0.0, 12.0]
}, {
'char_text':
'r',
'char_box': [23.0, 2.0, 31.0, 1.0, 24.0, 11.0, 16.0, 11.0]
}, {
'char_text':
'o',
'char_box': [33.0, 2.0, 43.0, 2.0, 36.0, 12.0, 25.0, 12.0]
}, {
'char_text':
'm',
'char_box': [46.0, 2.0, 61.0, 2.0, 53.0, 12.0, 39.0, 12.0]
}, {
'char_text':
':',
'char_box': [61.0, 2.0, 69.0, 2.0, 63.0, 12.0, 55.0, 12.0]
}],
'text':
'From:'
}
ann_info2 = {
'file_name':
'sample2.png',
'annotations': [{
'char_text': 'o',
'char_box': [0.0, 5.0, 7.0, 5.0, 9.0, 15.0, 2.0, 15.0]
}, {
'char_text':
'u',
'char_box': [7.0, 4.0, 14.0, 4.0, 18.0, 18.0, 11.0, 18.0]
}, {
'char_text':
't',
'char_box': [13.0, 1.0, 19.0, 2.0, 24.0, 18.0, 17.0, 18.0]
}],
'text':
'out'
}
with open(ann_file, 'w') as fw:
for ann_info in [ann_info1, ann_info2]:
fw.write(json.dumps(ann_info) + '\n')
return ann_info1, ann_info2
def _create_dummy_loader():
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser', keys=['file_name', 'text', 'annotations']))
return loader
def test_ocr_seg_dataset():
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
ann_file = osp.join(tmp_dir.name, 'fake_data.txt')
ann_info1, ann_info2 = _create_dummy_ann_file(ann_file)
# test initialization
loader = _create_dummy_loader()
dataset = OCRSegDataset(ann_file, loader, pipeline=[])
tmp_dir.cleanup()
# test pre_pipeline
img_info = dataset.data_infos[0]
results = dict(img_info=img_info)
dataset.pre_pipeline(results)
assert results['img_prefix'] == dataset.img_prefix
# test _parse_anno_info
annos = ann_info1['annotations']
with pytest.raises(AssertionError):
dataset._parse_anno_info(annos[0])
annos2 = ann_info2['annotations']
with pytest.raises(AssertionError):
dataset._parse_anno_info([{'char_text': 'i'}])
with pytest.raises(AssertionError):
dataset._parse_anno_info([{'char_box': [1, 2, 3, 4, 5, 6, 7, 8]}])
annos2[0]['char_box'] = [1, 2, 3]
with pytest.raises(AssertionError):
dataset._parse_anno_info(annos2)
return_anno = dataset._parse_anno_info(annos)
assert return_anno['chars'] == ['F', 'r', 'o', 'm', ':']
assert len(return_anno['char_rects']) == 5
# test prepare_train_img
expect_results = {
'img_info': {
'filename': 'sample1.png'
},
'img_prefix': '',
'ann_info': return_anno
}
data = dataset.prepare_train_img(0)
assert data == expect_results
# test evluation
metric = 'acc'
results = [{'text': 'From:'}, {'text': 'ou'}]
eval_res = dataset.evaluate(results, metric)
assert math.isclose(eval_res['word_acc'], 0.5, abs_tol=1e-4)
assert math.isclose(eval_res['char_precision'], 1.0, abs_tol=1e-4)
assert math.isclose(eval_res['char_recall'], 0.857, abs_tol=1e-4)