MMOCR / tests /test_dataset /test_transforms.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import unittest.mock as mock
import numpy as np
import pytest
import torchvision.transforms as TF
from mmdet.core import BitmapMasks, PolygonMasks
from PIL import Image
import mmocr.datasets.pipelines.transforms as transforms
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_instances(mock_randint, mock_sample):
img_gt = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 1, 1],
[0, 0, 1, 1, 1], [0, 0, 1, 1, 1]])
# test target is bigger than img size in sample_offset
mock_sample.side_effect = [1]
rci = transforms.RandomCropInstances(6, instance_key='gt_kernels')
(i, j) = rci.sample_offset(img_gt, (5, 5))
assert i == 0
assert j == 0
# test the second branch in sample_offset
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
mock_sample.side_effect = [1]
mock_randint.side_effect = [1, 2]
(i, j) = rci.sample_offset(img_gt, (5, 5))
assert i == 1
assert j == 2
mock_sample.side_effect = [1]
mock_randint.side_effect = [1, 2]
rci = transforms.RandomCropInstances(5, instance_key='gt_kernels')
(i, j) = rci.sample_offset(img_gt, (5, 5))
assert i == 0
assert j == 0
# test the first bracnh is sample_offset
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
mock_sample.side_effect = [0.1]
mock_randint.side_effect = [1, 1]
(i, j) = rci.sample_offset(img_gt, (5, 5))
assert i == 1
assert j == 1
# test crop_img(img, offset, target_size)
img = img_gt
offset = [0, 0]
target = [6, 6]
crop = rci.crop_img(img, offset, target)
assert np.allclose(img, crop[0])
assert np.allclose(crop[1], [0, 0, 5, 5])
target = [3, 2]
crop = rci.crop_img(img, offset, target)
assert np.allclose(np.array([[0, 0], [0, 0], [0, 0]]), crop[0])
assert np.allclose(crop[1], [0, 0, 2, 3])
# test crop_bboxes
canvas_box = np.array([2, 3, 5, 5])
bboxes = np.array([[2, 3, 4, 4], [0, 0, 1, 1], [1, 2, 4, 4],
[0, 0, 10, 10]])
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
assert np.allclose(kept_bboxes,
np.array([[0, 0, 2, 1], [0, 0, 2, 1], [0, 0, 3, 2]]))
assert kept_idx == [0, 2, 3]
bboxes = np.array([[10, 10, 11, 11], [0, 0, 1, 1]])
kept_bboxes, kept_idx = rci.crop_bboxes(bboxes, canvas_box)
assert kept_bboxes.size == 0
assert kept_bboxes.shape == (0, 4)
assert len(kept_idx) == 0
# test __call__
rci = transforms.RandomCropInstances(3, instance_key='gt_kernels')
results = {}
gt_kernels = [img_gt, img_gt.copy()]
results['gt_kernels'] = BitmapMasks(gt_kernels, 5, 5)
results['img'] = img_gt.copy()
results['mask_fields'] = ['gt_kernels']
mock_sample.side_effect = [0.1]
mock_randint.side_effect = [1, 1]
output = rci(results)
target = np.array([[0, 0, 0], [0, 1, 1], [0, 1, 1]])
assert output['img_shape'] == (3, 3)
assert np.allclose(output['img'], target)
assert np.allclose(output['gt_kernels'].masks[0], target)
assert np.allclose(output['gt_kernels'].masks[1], target)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_scale_aspect_jitter(mock_random):
img_scale = [(3000, 1000)] # unused
ratio_range = (0.5, 1.5)
aspect_ratio_range = (1, 1)
multiscale_mode = 'value'
long_size_bound = 2000
short_size_bound = 640
resize_type = 'long_short_bound'
keep_ratio = False
jitter = transforms.ScaleAspectJitter(
img_scale=img_scale,
ratio_range=ratio_range,
aspect_ratio_range=aspect_ratio_range,
multiscale_mode=multiscale_mode,
long_size_bound=long_size_bound,
short_size_bound=short_size_bound,
resize_type=resize_type,
keep_ratio=keep_ratio)
mock_random.side_effect = [0.5]
# test sample_from_range
result = jitter.sample_from_range([100, 200])
assert result == 150
# test _random_scale
results = {}
results['img'] = np.zeros((4000, 1000))
mock_random.side_effect = [0.5, 1]
jitter._random_scale(results)
# scale1 0.5, scale2=1 scale =0.5 650/1000, w, h
# print(results['scale'])
assert results['scale'] == (650, 2600)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_random_rotate(mock_random):
mock_random.side_effect = [0.5, 0]
results = {}
img = np.random.rand(5, 5)
results['img'] = img.copy()
results['mask_fields'] = ['masks']
gt_kernels = [results['img'].copy()]
results['masks'] = BitmapMasks(gt_kernels, 5, 5)
rotater = transforms.RandomRotateTextDet()
results = rotater(results)
assert np.allclose(results['img'], img)
assert np.allclose(results['masks'].masks, img)
def test_color_jitter():
img = np.ones((64, 256, 3), dtype=np.uint8)
results = {'img': img}
pt_official_color_jitter = TF.ColorJitter()
output1 = pt_official_color_jitter(img)
color_jitter = transforms.ColorJitter()
output2 = color_jitter(results)
assert np.allclose(output1, output2['img'])
def test_affine_jitter():
img = np.ones((64, 256, 3), dtype=np.uint8)
results = {'img': img}
pt_official_affine_jitter = TF.RandomAffine(degrees=0)
output1 = pt_official_affine_jitter(Image.fromarray(img))
affine_jitter = transforms.AffineJitter(
degrees=0,
translate=None,
scale=None,
shear=None,
resample=False,
fillcolor=0)
output2 = affine_jitter(results)
assert np.allclose(np.array(output1), output2['img'])
def test_random_scale():
h, w, c = 100, 100, 3
img = np.ones((h, w, c), dtype=np.uint8)
results = {'img': img, 'img_shape': (h, w, c)}
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
results['mask_fields'] = ['gt_masks']
size = 100
scale = (2., 2.)
random_scaler = transforms.RandomScaling(size=size, scale=scale)
results = random_scaler(results)
out_img = results['img']
out_poly = results['gt_masks'].masks[0][0]
gt_poly = polygon * 2
assert np.allclose(out_img.shape, (2 * h, 2 * w, c))
assert np.allclose(out_poly, gt_poly)
@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_flip(mock_randint):
img = np.ones((10, 10, 3), dtype=np.uint8)
img[0, 0, :] = 0
results = {'img': img, 'img_shape': img.shape}
polygon = np.array([0., 0., 0., 10., 10., 10., 10., 0.])
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
results['gt_masks_ignore'] = PolygonMasks([], *(img.shape[:2]))
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']
crop_ratio = 1.1
iter_num = 3
random_crop_fliper = transforms.RandomCropFlip(
crop_ratio=crop_ratio, iter_num=iter_num)
# test crop_target
pad_ratio = 0.1
h, w = img.shape[:2]
pad_h = int(h * pad_ratio)
pad_w = int(w * pad_ratio)
all_polys = results['gt_masks'].masks
h_axis, w_axis = random_crop_fliper.generate_crop_target(
img, all_polys, pad_h, pad_w)
assert np.allclose(h_axis, (0, 11))
assert np.allclose(w_axis, (0, 11))
# test __call__
polygon = np.array([1., 1., 1., 9., 9., 9., 9., 1.])
results['gt_masks'] = PolygonMasks([[polygon]], *(img.shape[:2]))
results['gt_masks_ignore'] = PolygonMasks([[polygon]], *(img.shape[:2]))
mock_randint.side_effect = [0, 1, 2]
results = random_crop_fliper(results)
out_img = results['img']
out_poly = results['gt_masks'].masks[0][0]
gt_img = img
gt_poly = polygon
assert np.allclose(out_img, gt_img)
assert np.allclose(out_poly, gt_poly)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
@mock.patch('%s.transforms.np.random.randint' % __name__)
def test_random_crop_poly_instances(mock_randint, mock_sample):
results = {}
img = np.zeros((30, 30, 3))
poly_masks = PolygonMasks([[
np.array([5., 5., 25., 5., 25., 10., 5., 10.])
], [np.array([5., 20., 25., 20., 25., 25., 5., 25.])]], 30, 30)
results['img'] = img
results['gt_masks'] = poly_masks
results['gt_masks_ignore'] = PolygonMasks([], 30, 30)
results['mask_fields'] = ['gt_masks', 'gt_masks_ignore']
results['gt_labels'] = [1, 1]
rcpi = transforms.RandomCropPolyInstances(
instance_key='gt_masks', crop_ratio=1.0, min_side_ratio=0.3)
# test sample_crop_box(img_size, results)
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 0, 0, 15]
crop_box = rcpi.sample_crop_box((30, 30), results)
assert np.allclose(np.array(crop_box), np.array([0, 0, 30, 15]))
# test __call__
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
mock_sample.side_effect = [0.1]
output = rcpi(results)
target = np.array([5., 5., 25., 5., 25., 10., 5., 10.])
assert len(output['gt_masks']) == 1
assert len(output['gt_masks_ignore']) == 0
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (15, 30, 3)
# test __call__ with blank instace_key masks
mock_randint.side_effect = [0, 0, 0, 0, 30, 0, 15, 0, 30]
mock_sample.side_effect = [0.1]
rcpi = transforms.RandomCropPolyInstances(
instance_key='gt_masks_ignore', crop_ratio=1.0, min_side_ratio=0.3)
results['img'] = img
results['gt_masks'] = poly_masks
output = rcpi(results)
assert len(output['gt_masks']) == 2
assert np.allclose(output['gt_masks'].masks[0][0], poly_masks.masks[0][0])
assert np.allclose(output['gt_masks'].masks[1][0], poly_masks.masks[1][0])
assert output['img'].shape == (30, 30, 3)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_random_rotate_poly_instances(mock_sample):
results = {}
img = np.zeros((30, 30, 3))
poly_masks = PolygonMasks(
[[np.array([10., 10., 20., 10., 20., 20., 10., 20.])]], 30, 30)
results['img'] = img
results['gt_masks'] = poly_masks
results['mask_fields'] = ['gt_masks']
rrpi = transforms.RandomRotatePolyInstances(rotate_ratio=1.0, max_angle=90)
mock_sample.side_effect = [0., 1.]
output = rrpi(results)
assert np.allclose(output['gt_masks'].masks[0][0],
np.array([10., 20., 10., 10., 20., 10., 20., 20.]))
assert output['img'].shape == (30, 30, 3)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_square_resize_pad(mock_sample):
results = {}
img = np.zeros((15, 30, 3))
polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.])
poly_masks = PolygonMasks([[polygon]], 15, 30)
results['img'] = img
results['gt_masks'] = poly_masks
results['mask_fields'] = ['gt_masks']
srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5)
# test resize with padding
mock_sample.side_effect = [0.]
output = srp(results)
target = 4. / 3 * polygon
target[1::2] += 10.
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)
# test resize to square without padding
results['img'] = img
results['gt_masks'] = poly_masks
mock_sample.side_effect = [1.]
output = srp(results)
target = polygon.copy()
target[::2] *= 4. / 3
target[1::2] *= 8. / 3
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)
def test_pyramid_rescale():
img = np.random.randint(0, 256, size=(128, 100, 3), dtype=np.uint8)
x = {'img': copy.deepcopy(img)}
f = transforms.PyramidRescale()
results = f(x)
assert results['img'].shape == (128, 100, 3)
# Test invalid inputs
with pytest.raises(AssertionError):
transforms.PyramidRescale(base_shape=(128))
with pytest.raises(AssertionError):
transforms.PyramidRescale(base_shape=128)
with pytest.raises(AssertionError):
transforms.PyramidRescale(factor=[])
with pytest.raises(AssertionError):
transforms.PyramidRescale(randomize_factor=[])
with pytest.raises(AssertionError):
f({})
# Test factor = 0
f_derandomized = transforms.PyramidRescale(
factor=0, randomize_factor=False)
results = f_derandomized({'img': copy.deepcopy(img)})
assert np.all(results['img'] == img)