Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import pandas as pd
|
|
2 |
import gradio as gr
|
3 |
from pathlib import Path
|
4 |
import plotly.express as px
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
from chronos import ChronosPipeline
|
@@ -149,26 +150,86 @@ def forecast_chronos_data(df_state, date_column, target_column, select_period, f
|
|
149 |
forecast_index = range(len(monthly_sales), len(monthly_sales) + prediction_length)
|
150 |
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
|
174 |
def home_page():
|
|
|
2 |
import gradio as gr
|
3 |
from pathlib import Path
|
4 |
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from chronos import ChronosPipeline
|
|
|
150 |
forecast_index = range(len(monthly_sales), len(monthly_sales) + prediction_length)
|
151 |
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)
|
152 |
|
153 |
+
forecast_index = list(forecast_index)
|
154 |
+
fig = px.line(
|
155 |
+
x=monthly_sales.index,
|
156 |
+
y=monthly_sales["y"],
|
157 |
+
title="Sales Forecasting Visualization",
|
158 |
+
labels={"x": "Months", "y": f"{target_column}"},
|
159 |
+
)
|
160 |
+
|
161 |
+
fig.add_trace(
|
162 |
+
go.Scatter(
|
163 |
+
x=forecast_index,
|
164 |
+
y=median,
|
165 |
+
name="Median Forecast",
|
166 |
+
line=dict(color="tomato", width=2)
|
167 |
+
)
|
168 |
+
)
|
169 |
+
|
170 |
+
fig.add_trace(
|
171 |
+
go.Scatter(
|
172 |
+
x=forecast_index,
|
173 |
+
y=high,
|
174 |
+
name="80% Prediction Interval",
|
175 |
+
mode='lines',
|
176 |
+
line=dict(width=0),
|
177 |
+
showlegend=False
|
178 |
+
)
|
179 |
+
)
|
180 |
+
|
181 |
+
fig.update_layout(
|
182 |
+
title_font_size=20,
|
183 |
+
xaxis_title_font_size=16,
|
184 |
+
yaxis_title_font_size=16,
|
185 |
+
legend_font_size=16,
|
186 |
+
xaxis_tickfont_size=14,
|
187 |
+
yaxis_tickfont_size=14,
|
188 |
+
showlegend=True,
|
189 |
+
width=1200, # Equivalent to figsize=(30, 10)
|
190 |
+
height=400,
|
191 |
+
xaxis=dict(
|
192 |
+
gridcolor='rgba(128, 128, 128, 0.7)',
|
193 |
+
gridwidth=1.2,
|
194 |
+
dtick=3, # Set tick interval to 3 months
|
195 |
+
griddash='dash'
|
196 |
+
),
|
197 |
+
yaxis=dict(
|
198 |
+
gridcolor='rgba(128, 128, 128, 0.7)',
|
199 |
+
gridwidth=1.2,
|
200 |
+
dtick=5, # Set tick interval to 5 units
|
201 |
+
griddash='dash'
|
202 |
+
),
|
203 |
+
plot_bgcolor='white'
|
204 |
+
margin=dict(l=50, r=50, t=50, b=50)
|
205 |
+
)
|
206 |
+
|
207 |
+
fig.update_traces(
|
208 |
+
line=dict(color="royalblue", width=2),
|
209 |
+
selector=dict(name="y") # Updates only the historical data line
|
210 |
+
)
|
211 |
+
return fig
|
212 |
+
|
213 |
+
# plt.figure(figsize=(30, 10))
|
214 |
+
# plt.plot(monthly_sales["y"], color="royalblue", label="Historical Data", linewidth=2)
|
215 |
+
# plt.plot(forecast_index, median, color="tomato", label="Median Forecast", linewidth=2)
|
216 |
+
# plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% Prediction Interval")
|
217 |
+
# plt.title("Sales Forecasting Visualization", fontsize=16)
|
218 |
+
# plt.xlabel("Months", fontsize=20)
|
219 |
+
# plt.ylabel("Sold Qty", fontsize=20)
|
220 |
+
|
221 |
+
# plt.xticks(fontsize=18)
|
222 |
+
# plt.yticks(fontsize=18)
|
223 |
+
|
224 |
+
# ax = plt.gca()
|
225 |
+
# ax.xaxis.set_major_locator(ticker.MultipleLocator(3))
|
226 |
+
# ax.yaxis.set_major_locator(ticker.MultipleLocator(5))
|
227 |
+
# ax.grid(which='major', linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
|
228 |
+
|
229 |
+
# plt.legend(fontsize=18)
|
230 |
+
# plt.grid(linestyle='--', linewidth=1.2, color='gray', alpha=0.7)
|
231 |
+
# plt.tight_layout()
|
232 |
+
# return plt.gcf()
|
233 |
|
234 |
|
235 |
def home_page():
|