Spaces:
Running
Running
File size: 16,099 Bytes
aba8162 2435439 c9776de aba8162 2435439 aba8162 2435439 aba8162 3550d0c 7c288c4 aba8162 2435439 c9776de 5bc0a7e 603bc51 56ae496 603bc51 56ae496 603bc51 3550d0c 603bc51 56ae496 5bc0a7e c9776de 2435439 aba8162 c9776de aba8162 4b21286 aba8162 2435439 aba8162 49c3eca aba8162 c9776de 603bc51 3550d0c c9776de 603bc51 d133b7d 603bc51 49c3eca c9776de 3550d0c 49c3eca 603bc51 3550d0c c9776de 3550d0c c9776de 3550d0c c9776de 603bc51 5384f91 603bc51 4e2c35f 49c3eca 603bc51 d133b7d 49c3eca 603bc51 49c3eca c9776de 25cd81a 49c3eca 25cd81a 49c3eca 25cd81a d133b7d 25cd81a 49c3eca 603bc51 49c3eca c9776de aba8162 599cb93 aba8162 97c8c1b 7389f5f aba8162 7389f5f aba8162 c9776de aba8162 de9fc39 aba8162 c9776de 5384f91 aba8162 97c8c1b 603bc51 d133b7d 603bc51 d133b7d 7389f5f aba8162 97c8c1b aba8162 d6b8638 5bc0a7e aba8162 c9776de 49c3eca aba8162 4ff090f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import re
import copy
import time
import gradio as gr
from text_generation import Client
from transformers import load_tool
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
HF_TOKEN = os.environ.get("HF_TOKEN", None)
os.environ["HF_ALLOW_CODE_EVAL"] = "1"
print(HF_TOKEN)
FIM_PREFIX = "<fim_prefix>"
FIM_MIDDLE = "<fim_middle>"
FIM_SUFFIX = "<fim_suffix>"
FIM_INDICATOR = "<FILL_HERE>"
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[
gr.themes.GoogleFont("Open Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
)
tool = load_tool("vwxyzjn/pyserini-wikipedia-kilt-doc")
tool_fn = lambda x: tool(x).split("\n")[1][:600] # limit the amount if token, system_prompts
clients = {
"StarCoderBase TriviaQA": [
Client(
"https://api-inference.huggingface.co/models/vwxyzjn/starcoderbase-triviaqa",
headers={"Authorization": f"Bearer {HF_TOKEN}"},
),
{"Wiki": tool_fn},
"""\
Answer the following question:
Q: In which branch of the arts is Patricia Neary famous?
A: Ballets
A2: <request><Wiki>Patricia Neary<call>Patricia Neary (born October 27, 1942) is an American ballerina, choreographer and ballet director, who has been particularly active in Switzerland. She has also been a highly successful ambassador for the Balanchine Trust, bringing George Balanchine's ballets to 60 cities around the globe.<response>
Result=Ballets<submit>
Q: Who won Super Bowl XX?
A: Chicago Bears
A2: <request><Wiki>Super Bowl XX<call>Super Bowl XX was an American football game between the National Football Conference (NFC) champion Chicago Bears and the American Football Conference (AFC) champion New England Patriots to decide the National Football League (NFL) champion for the 1985 season. The Bears defeated the Patriots by the score of 46–10, capturing their first NFL championship (and Chicago's first overall sports victory) since 1963, three years prior to the birth of the Super Bowl. Super Bowl XX was played on January 26, 1986 at the Louisiana Superdome in New Orleans.<response>
Result=Chicago Bears<submit>
""",
["Q: In which country is Oberhofen situated?", "Q: Irish Olympic champion Michelle smith was suspended in 1999 over drug allegations in which sport?"]
],
"StarCoderBase GSM8K": [
Client(
"https://api-inference.huggingface.co/models/lvwerra/starcoderbase-gsm8k",
headers={"Authorization": f"Bearer {HF_TOKEN}"},
),
{"PythonInterpreter": load_tool("lvwerra/python-interpreter")},
"""\
Example of using a Python API to solve math questions.
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
<request><PythonInterpreter>
def solution():
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result
print(solution())
<call>72<response>
Result = 72 <submit>
""",
["Q: Tim has $400, and he received $1021. How much does he have?"]
],
}
def parse_tool_call(text, request_token="<request>", call_token="<call>"):
"""
Parse request string. Expected format: <request><tool_name>query<call>
"""
result = re.search(f"(?<={request_token}).*?(?={call_token})", text, re.DOTALL)
# if we can't find a <request>/<call> span we return none
if result is None:
return None, None
else:
extracted_text = result.group()
result = re.search(r"<(.*?)>", extracted_text)
# if we can't find a tool name we return none
if result is None:
return None, None
else:
tool = result.group(1)
# split off the tool name
query = ">".join(extracted_text.split(">")[1:])
return tool, query
def generate(
prompt, system_prompt, version, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
client, tools, _, _ = clients[version]
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
fim_mode = False
# TextEnv tool
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
stop_sequences=["<call>", "<submit>"]
)
generation_still_running = True
request_idx = -1
call_idx = -1
response_idx = -1
submit_idx = -1
i = 0
while generation_still_running:
try:
stream = client.generate_stream(system_prompt + prompt, **generate_kwargs)
# call env phase
output = system_prompt + prompt
generation_start_idx = len(output)
highlighted_output = [
(prompt, "QUERY"),
]
yield highlighted_output, output[generation_start_idx:]
for response in stream:
i += 1
output += response.token.text
tool, query = parse_tool_call(output[generation_start_idx:])
if tool is not None and query is not None:
# print("=====tool", i, tool, response, output)
if tool not in tools:
response = f"Unknown tool {tool}."
try:
response = tools[tool](query)
output += response + "<response>"
except Exception as error:
response = f"Tool error: {str(error)}"
if request_idx == -1:
request_idx = output[generation_start_idx:].find("<request>")
if call_idx == -1:
call_idx = output[generation_start_idx:].find("<call>")
if call_idx != -1:
call_idx += len("<call>")
if response_idx == -1:
response_idx = output[generation_start_idx:].find("<response>")
if response_idx != -1:
response_idx += len("<response>")
if submit_idx == -1:
submit_idx = output[generation_start_idx:].find("<submit>")
# I am sorry about the code
print("-------", generation_start_idx, request_idx, call_idx, response_idx)
highlighted_output = [
(prompt, "QUERY"),
(output[generation_start_idx:], "MODEL") if request_idx == -1 else ("", ""),
(output[generation_start_idx:generation_start_idx+request_idx], "MODEL"),
(output[generation_start_idx+request_idx:], "MODEL") if call_idx == -1 else ("", ""),
(output[generation_start_idx+request_idx:generation_start_idx+call_idx], "TOOL_REQUEST"),
(output[generation_start_idx+call_idx:generation_start_idx+response_idx], "TOOL_CALL"),
(output[generation_start_idx+response_idx:], "MODEL") if submit_idx != -1 else ("", ""),
# (output[generation_start_idx:generation_start_idx+request_idx], ""),
# (output[generation_start_idx+request_idx:generation_start_idx+call_idx], "request"),
# (output[generation_start_idx+call_idx:], "call"),
]
print(i, highlighted_output, output[generation_start_idx:])
yield highlighted_output, output[generation_start_idx:]
# breakpoint()
call_output = copy.deepcopy(output)
print("start submit output")
# response phase
generate_kwargs["stop_sequences"] = ["<submit>"]
stream = client.generate_stream(output, **generate_kwargs)
for response in stream:
output += response.token.text
if submit_idx == -1:
submit_idx = output[generation_start_idx:].find("<submit>")
# print("-------", generation_start_idx, request_idx, call_idx, response_idx)
highlighted_output = [
(prompt, "QUERY"),
(output[generation_start_idx:generation_start_idx+request_idx], "MODEL"),
(output[generation_start_idx+request_idx:generation_start_idx+call_idx], "TOOL_REQUEST"),
(output[generation_start_idx+call_idx:generation_start_idx+response_idx], "TOOL_CALL"),
(output[generation_start_idx+response_idx:], "MODEL") if submit_idx != -1 else ("", ""),
]
# print(highlighted_output, output[generation_start_idx:])
yield highlighted_output, output[generation_start_idx:]
print("-------", generation_start_idx, request_idx, call_idx, response_idx)
print(highlighted_output, output[generation_start_idx:])
return highlighted_output, output[generation_start_idx:]
except Exception as e:
if "loading" in str(e):
gr.Warning("waiting for model to load... (this could take up to 20 minutes, after which things are much faster)")
time.sleep(7)
continue
else:
raise gr.Error(str(e))
examples = [
"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1)\n\n# Train a logistic regression model, predict the labels on the test set and compute the accuracy score",
"// Returns every other value in the array as a new array.\nfunction everyOther(arr) {",
"Poor English: She no went to the market. Corrected English:",
"def alternating(list1, list2):\n results = []\n for i in range(min(len(list1), len(list2))):\n results.append(list1[i])\n results.append(list2[i])\n if len(list1) > len(list2):\n <FILL_HERE>\n else:\n results.extend(list2[i+1:])\n return results",
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}"
monospace_css = """
#q-input textarea {
font-family: monospace, 'Consolas', Courier, monospace;
}
"""
css += share_btn_css + monospace_css + ".gradio-container {color: black}"
description = """
<div style="text-align: center;">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/textenv_demo_banner.png">
</div>
<div style="text-align: left;">
<hr>
<p>This is a demo to generate text the following StarCoderBase models fine-tuned using <a href="https://github.com/huggingface/trl/pull/424">TRL's TextEnvironment</a>:</p>
<ul>
<li><a href="https://huggingface.co/vwxyzjn/starcoderbase-triviaqa">StarCoderBase TriviaQA</a>: Uses a Wikipedia search index to answer trivia questions. It was trained on the TriviaQA dataset.</li>
<li><a href="https://huggingface.co/lvwerra/starcoderbase-gsm8k">StarCoderBase GSM8K</a>: Uses a Python Interpreter to answer math questions. It was trained on the GSM8K dataset.</li>
</ul>
</div>
"""
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(description)
with gr.Row():
version = gr.Dropdown(
list(clients.keys()),
value=list(clients.keys())[0],
label="Model",
info="Choose a model from the list",
)
with gr.Row():
with gr.Column():
instruction = gr.Textbox(
value="Q: In which country is Oberhofen situated?",
# placeholder="Enter your question here. E.g., Q: In which country is Oberhofen situated?",
lines=2,
label="Input",
)
submit = gr.Button("Generate", variant="primary")
output = gr.HighlightedText(
label="Output",
color_map={"QUERY": "red", "TOOL_CALL": "green", "TOOL_RESPONSE": "blue", "MODEL": "pink"},
)
gr.Markdown("_Note:_ The trivia model is trained to give an answer first and then refine it with a Wiki call.")
gr_examples = gr.Examples(
examples=[example for client in clients.values() for example in client[3]],
inputs=[instruction],
cache_examples=False,
)
with gr.Row():
with gr.Column():
with gr.Accordion("Raw output", open=False):
output2 = gr.Code(elem_id="q-output", lines=30, label="Raw output")
with gr.Accordion("Advanced settings", open=False):
with gr.Row():
column_1, column_2 = gr.Column(), gr.Column()
with column_1:
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
with column_2:
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Accordion("Prompt", open=False):
system_prompt = gr.Textbox(
value=clients[list(clients.keys())[0]][2],
label="System prompt",
)
version.select(
lambda x: (clients[x][2]),
inputs=[version],
outputs=[system_prompt],
)
submit.click(
generate,
inputs=[instruction, system_prompt, version, temperature, max_new_tokens, top_p, repetition_penalty],
outputs=[output, output2],
)
demo.queue(concurrency_count=16).launch(debug=True)
|