File size: 1,341 Bytes
1431cff 64226e9 1431cff 08b554d 1431cff 64226e9 1431cff 08b554d 64226e9 1431cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.
# %% auto 0
__all__ = ['learn', 'categories', 'title', 'description', 'article', 'interpretation', 'enable_queue', 'image', 'label',
'examples', 'intf', 'is_cat', 'classify_image']
# %% app.ipynb 1
from fastai.vision.all import *
import gradio as gr
def is_cat(x):
return x[0].isupper()
# %% app.ipynb 3
learn = load_learner("model.pkl")
# %% app.ipynb 5
categories = ("Dog", "Cat")
def classify_image(img):
pred, idx, probs = learn.predict(img)
return dict(zip(categories, map(float, probs)))
# %% app.ipynb 8
title = "Cat or Dog Classifier"
description = "A Cat or Dog classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
interpretation='default'
enable_queue=True
# %% app.ipynb 9
image = gr.inputs.Image(shape=(192, 192))
label = gr.outputs.Label()
examples = ["dog1.jpg", "dog2.jpg", "dog3.jpg", "cat1.jpg", "cat2.jpg"]
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples, title=title, description=description, article=article, interpretation=interpretation, enable_queue=enable_queue)
intf.launch(inline=False)
|