|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline |
|
|
|
def getit(prompt): |
|
generated = tokenizer(f'<|startoftext|> {prompt}', return_tensors="pt").input_ids.cpu() |
|
sample_outputs = sample_outputs = model.generate( |
|
generated, |
|
do_sample=True, |
|
max_length=512, |
|
top_k=50, |
|
top_p=0.95, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size = 3, |
|
temperature = 0.7 |
|
) |
|
predicted_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True) |
|
return predicted_text[len(prompt):] |
|
|
|
model_name = 'tsaditya/GPT-Kalki' |
|
model = AutoModelWithLMHead.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
inp = st.text_input(value="ஆதித்த கரிகாலர் தஞ்சைக்குச் செல்ல உடனடியாக ஒப்புக்கொண்டார்.",label = "Enter prompt") |
|
if st.button("Generate!"): |
|
out = getit(inp) |
|
st.write(out) |
|
video_file = open(r'myvideo.mp4', 'rb') |
|
video_bytes = video_file.read() |
|
st.video(video_bytes) |
|
|
|
|