twigs commited on
Commit
21ed34f
·
1 Parent(s): fc4ec36

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -10
app.py CHANGED
@@ -33,15 +33,17 @@ def id_replace_complex(s, threshold=0.4):
33
  # if score >= threshold select tokens[idx]
34
  compl_tok = [tokens[idx] for idx, x in enumerate(
35
  cwi_pipe(cands)) if x['score'] >= threshold]
36
-
 
37
  # potentially parallelizable, depends on desired behaviour
38
  for t in compl_tok:
39
  idx = s.index(t)
40
  s = s[:idx] + '<mask>' + s[idx+len(t):]
41
  # get top candidate for mask fill in complex token
42
- s = fill_pipe(s)[0]['sequence']
43
-
44
- return s, compl_tok
 
45
 
46
 
47
  def generate_candidate_text(s, model, tokenizer, tokenized=False):
@@ -72,10 +74,10 @@ def rank_candidate_text(sentences):
72
 
73
  def full_pipeline(source, simpl_model, simpl_tok, tokens, lexical=False):
74
 
75
- modified, complex_words = id_replace_complex(source, threshold=0.2) if lexical else (source, None)
76
  cands = generate_candidate_text(tokens+modified, simpl_model, simpl_tok)
77
  output = rank_candidate_text(cands)
78
- return output, complex_words
79
 
80
  def main():
81
 
@@ -117,10 +119,10 @@ def main():
117
  if (submit):
118
 
119
  tokens = " ".join([t+str(v) for t, v in zip(aug_tok, user_values)]) + " "
120
- output, words = full_pipeline(input_sentence, simpl_model, simpl_tok, tokens, lexical)
121
- print(tokens, lexical)
122
-
123
- c1, c2 = st.columns([1,2])
124
 
125
  with c1:
126
  st.markdown("#### Words identified as complex")
@@ -132,6 +134,15 @@ def main():
132
  st.markdown("None :smile:")
133
 
134
  with c2:
 
 
 
 
 
 
 
 
 
135
  st.markdown(f"#### Original Sentence:\n > {input_sentence}")
136
  st.markdown(f"#### Output Sentence:\n > {output}")
137
 
 
33
  # if score >= threshold select tokens[idx]
34
  compl_tok = [tokens[idx] for idx, x in enumerate(
35
  cwi_pipe(cands)) if x['score'] >= threshold]
36
+
37
+ replacements = []
38
  # potentially parallelizable, depends on desired behaviour
39
  for t in compl_tok:
40
  idx = s.index(t)
41
  s = s[:idx] + '<mask>' + s[idx+len(t):]
42
  # get top candidate for mask fill in complex token
43
+ top_result = fill_pipe(s)[0]
44
+ s = top_result['sequence']
45
+ replacements.append(top_result['token_str'])
46
+ return s, compl_tok, replacements
47
 
48
 
49
  def generate_candidate_text(s, model, tokenizer, tokenized=False):
 
74
 
75
  def full_pipeline(source, simpl_model, simpl_tok, tokens, lexical=False):
76
 
77
+ modified, complex_words, replacements = id_replace_complex(source, threshold=0.2) if lexical else (source, None, None)
78
  cands = generate_candidate_text(tokens+modified, simpl_model, simpl_tok)
79
  output = rank_candidate_text(cands)
80
+ return output, complex_words, replacements
81
 
82
  def main():
83
 
 
119
  if (submit):
120
 
121
  tokens = " ".join([t+str(v) for t, v in zip(aug_tok, user_values)]) + " "
122
+ output, words, replacements = full_pipeline(input_sentence, simpl_model, simpl_tok, tokens, lexical)
123
+
124
+
125
+ c1, c2, c3 = st.columns([1,1,2])
126
 
127
  with c1:
128
  st.markdown("#### Words identified as complex")
 
134
  st.markdown("None :smile:")
135
 
136
  with c2:
137
+ st.markdown("#### Their mask-predicted replacement")
138
+ if replacements:
139
+ for w in replacements:
140
+ st.markdown(f"* {w}")
141
+
142
+ else:
143
+ st.markdown("None :smile:")
144
+
145
+ with c3:
146
  st.markdown(f"#### Original Sentence:\n > {input_sentence}")
147
  st.markdown(f"#### Output Sentence:\n > {output}")
148