Spaces:
Runtime error
Runtime error
import torch, os, argparse, shutil, textwrap, time, streamlit as st | |
from langchain.document_loaders import YoutubeLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceBgeEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain.llms import OpenAI | |
from langchain.chat_models import ChatOpenAI | |
from langchain import HuggingFaceHub | |
from transformers import pipeline | |
from deep_translator import GoogleTranslator | |
from langdetect import detect | |
def typewriter(text, speed): | |
container = st.empty() | |
displayed_text = '' | |
for char in text: | |
displayed_text += char | |
container.markdown(displayed_text) | |
time.sleep(1 / speed) | |
def wrap_text_preserve_newlines(text, width=110): | |
lines = text.split('\n') | |
wrapped_lines = [textwrap.fill(line, width=width) for line in lines] | |
wrapped_text = '\n'.join(wrapped_lines) | |
return wrapped_text | |
def process_llm_response(llm_originalresponse2): | |
typewriter(llm_originalresponse2['result'], speed=40) | |
def extract_video_id(youtube_url): | |
try: | |
parsed_url = urlparse(youtube_url) | |
query_params = parse_qs(parsed_url.query) | |
video_id = query_params.get('v', [None])[0] | |
return video_id | |
except Exception as e: | |
print(f"Error extracting video ID: {e}") | |
return None | |
def chat(): | |
HF_TOKEN = os.environ.get('HF_TOKEN', False) | |
model_name = "BAAI/bge-base-en" | |
encode_kwargs = {'normalize_embeddings': True} | |
st.title('YouTube ChatBot') | |
video_url = st.text_input('Insert video URL', placeholder='Format should be like: https://www.youtube.com/watch?v=pSLeYvld8Mk') | |
query = st.text_input("Ask any question about the video") | |
if st.button('Submit', type='primary'): | |
with st.spinner('Processing the video...'): | |
video_id = extract_video_id(video_url) | |
loader = YoutubeLoader(video_id) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_ovelap=100) | |
documents = text_splitter.split_documents(documents) | |
vector_db = Chroma.from_documents( | |
documents, | |
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name, model_kwargs={'device': 'cuda' if torch.cuda.is_available() else 'cpu'}, encode_kwargs=encode_kwargs) | |
) | |
repo_id = "tiiuae/falcon-7b-instruct" | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=HuggingFaceHub( | |
huggingfacehub_api_token=HF_TOKEN, | |
repo_id=repo_id, | |
model_kwargs={'temperature': 0.1, 'max_new_tokens': 1000}, | |
), | |
retriever=vector_db.as_retriever(), | |
return_source_documents=False, | |
verbose=False | |
) | |
with st.spinner('Generating Answer...'): | |
llm_response = qa_chain(query) | |
process_llm_response(llm_response) | |
chat() |