Josh Cox
commited on
Commit
·
d6a11dd
1
Parent(s):
45bcb92
justArtist
Browse files- __pycache__/artist_lib.cpython-311.pyc +0 -0
- app.py +2 -104
__pycache__/artist_lib.cpython-311.pyc
CHANGED
Binary files a/__pycache__/artist_lib.cpython-311.pyc and b/__pycache__/artist_lib.cpython-311.pyc differ
|
|
app.py
CHANGED
@@ -30,110 +30,10 @@ drawdemo = gr.Interface(
|
|
30 |
],
|
31 |
outputs="image",
|
32 |
examples=[
|
33 |
-
['
|
34 |
-
['picasso the scream', "stable-diffusion-v1-5", False],
|
35 |
-
['dali american gothic', "stable-diffusion-v1-5", False],
|
36 |
-
['matisse mona lisa', "stable-diffusion-v1-5", False],
|
37 |
-
['maxfield parrish angel in lake ', "stable-diffusion-v1-5", False],
|
38 |
-
['peter max dogs playing poker', "stable-diffusion-v1-5", False],
|
39 |
-
['hindu mandala copper and patina green', "stable-diffusion-v1-5", False],
|
40 |
-
['hindu mandala fruit salad', "stable-diffusion-v1-5", False],
|
41 |
-
['hindu mandala neon green black and purple', "stable-diffusion-v1-5", False],
|
42 |
-
['astronaut riding a horse on mars', "stable-diffusion-v1-5", False]
|
43 |
],
|
44 |
)
|
45 |
|
46 |
-
AudioDemo = gr.Interface(
|
47 |
-
fn=artist_lib.generate_tone,
|
48 |
-
inputs=[
|
49 |
-
gr.Dropdown(artist_lib.notes, type="index"),
|
50 |
-
gr.Slider(4, 6, step=1),
|
51 |
-
gr.Textbox(value=1, label="Duration in seconds")
|
52 |
-
],
|
53 |
-
outputs="audio"
|
54 |
-
)
|
55 |
-
|
56 |
-
imageClassifierDemo = gr.Interface(
|
57 |
-
fn=artist_lib.imageClassifier,
|
58 |
-
inputs="image",
|
59 |
-
outputs="text"
|
60 |
-
)
|
61 |
-
|
62 |
-
audioGeneratorDemo = gr.Interface(
|
63 |
-
fn=artist_lib.audioGenerator,
|
64 |
-
inputs="text",
|
65 |
-
outputs="audio",
|
66 |
-
examples=[
|
67 |
-
['balsamic beats'],
|
68 |
-
['dance the night away']
|
69 |
-
]
|
70 |
-
)
|
71 |
-
|
72 |
-
nameMyPetDemo = gr.Interface(
|
73 |
-
fn=artist_lib.nameMyPet,
|
74 |
-
inputs=[
|
75 |
-
gr.Text(label="What type of animal is your pet?", value="green cat")
|
76 |
-
],
|
77 |
-
outputs="text",
|
78 |
-
examples=[
|
79 |
-
['dog'],
|
80 |
-
['pink dolphin'],
|
81 |
-
['elevated elephant'],
|
82 |
-
['green monkey'],
|
83 |
-
['bionic beaver'],
|
84 |
-
['felonous fish'],
|
85 |
-
['delinquent dog'],
|
86 |
-
['dragging donkey'],
|
87 |
-
['stinky skunk'],
|
88 |
-
['pink unicorn'],
|
89 |
-
['naughty narwahl'],
|
90 |
-
['blue cat']
|
91 |
-
],
|
92 |
-
)
|
93 |
-
|
94 |
-
blog_writer_demo = gr.Interface(
|
95 |
-
fn=artist_lib.write_blog,
|
96 |
-
inputs=[
|
97 |
-
gr.Text(label="Blog description text", value="machine learning can be used to track chickens"),
|
98 |
-
gr.Dropdown(label='Model', choices=["gpt-neo-1.3B", "gpt-neo-2.7B"], value="gpt-neo-1.3B"),
|
99 |
-
gr.Number(label='Minimum word count', value=50, precision=0),
|
100 |
-
gr.Number(label='Maximum word count', value=50, precision=0),
|
101 |
-
gr.Checkbox(label="Force-New"),
|
102 |
-
],
|
103 |
-
outputs="text",
|
104 |
-
examples=[
|
105 |
-
['machine learning can be used to track chickens', "gpt-neo-1.3B", 50, 50, False],
|
106 |
-
['music and machine learning', "gpt-neo-2.7B", 50, 50, False]
|
107 |
-
],
|
108 |
-
)
|
109 |
-
|
110 |
-
generateAudioDemo = gr.Interface(
|
111 |
-
fn=artist_lib.generate_spectrogram_audio_and_loop,
|
112 |
-
title="Audio Diffusion",
|
113 |
-
description="Generate audio using Huggingface diffusers.\
|
114 |
-
The models without 'latent' or 'ddim' give better results but take about \
|
115 |
-
20 minutes without a GPU. For GPU, you can use \
|
116 |
-
[colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/gradio_app.ipynb) \
|
117 |
-
to run this app.",
|
118 |
-
inputs=[
|
119 |
-
gr.Dropdown(label="Model",
|
120 |
-
choices=[
|
121 |
-
"teticio/audio-diffusion-256",
|
122 |
-
"teticio/audio-diffusion-breaks-256",
|
123 |
-
"teticio/audio-diffusion-instrumental-hiphop-256",
|
124 |
-
"teticio/audio-diffusion-ddim-256",
|
125 |
-
"teticio/latent-audio-diffusion-256",
|
126 |
-
"teticio/latent-audio-diffusion-ddim-256"
|
127 |
-
],
|
128 |
-
value="teticio/latent-audio-diffusion-ddim-256")
|
129 |
-
],
|
130 |
-
outputs=[
|
131 |
-
gr.Image(label="Mel spectrogram", image_mode="L"),
|
132 |
-
gr.Audio(label="Audio"),
|
133 |
-
gr.Audio(label="Loop"),
|
134 |
-
],
|
135 |
-
allow_flagging="never")
|
136 |
-
|
137 |
with gr.Blocks() as gallerydemo:
|
138 |
with gr.Column(variant="panel"):
|
139 |
with gr.Row(variant="compact"):
|
@@ -151,9 +51,7 @@ with gr.Blocks() as gallerydemo:
|
|
151 |
|
152 |
btn.click(artist_lib.fake_gan, None, gallery)
|
153 |
|
154 |
-
|
155 |
-
#artist = gr.TabbedInterface( [drawdemo, blog_writer_demo, imageClassifierDemo, generateAudioDemo, audioGeneratorDemo, AudioDemo, nameMyPetDemo], ["Draw", "Bloggr", "imageClassifier", "generateAudio", "audioGenerator", "AudioDemo", "nameMyPet"])
|
156 |
-
artist = gr.TabbedInterface( [drawdemo, imageClassifierDemo, generateAudioDemo, nameMyPetDemo, blog_writer_demo], ["Draw", "imageClassifier", "generateAudio", "nameMyPet", "Bloggr"])
|
157 |
|
158 |
artist.queue(
|
159 |
max_size = 4
|
|
|
30 |
],
|
31 |
outputs="image",
|
32 |
examples=[
|
33 |
+
['hindu mandala fruit salad', "stable-diffusion-v1-5", False]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
],
|
35 |
)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
with gr.Blocks() as gallerydemo:
|
38 |
with gr.Column(variant="panel"):
|
39 |
with gr.Row(variant="compact"):
|
|
|
51 |
|
52 |
btn.click(artist_lib.fake_gan, None, gallery)
|
53 |
|
54 |
+
artist = gr.TabbedInterface( [drawdemo], ["Draw"])
|
|
|
|
|
55 |
|
56 |
artist.queue(
|
57 |
max_size = 4
|