umsee commited on
Commit
6c5befe
·
1 Parent(s): 7c087cb

Added the model file and tokenizer as a directory

Browse files
albert/.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "8804bc60-c9e2-4713-9800-1bc2fea11241",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stderr",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "/home/umesh/conda/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
14
+ " from .autonotebook import tqdm as notebook_tqdm\n"
15
+ ]
16
+ }
17
+ ],
18
+ "source": [
19
+ "from transformers import pipeline"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 4,
25
+ "id": "322cd68e-9257-4d07-aafc-19e9072f1bba",
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
30
+ "\n",
31
+ "model = AutoModelForSequenceClassification.from_pretrained('.')\n",
32
+ "tokenizer = AutoTokenizer.from_pretrained('.')"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 5,
38
+ "id": "fde22c8f-4d57-4544-bc2b-55e4dbbc5fd3",
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "classifier = pipeline('sentiment-analysis',model = model, tokenizer = tokenizer, top_k =1)\n",
43
+ "det_classer = pipeline('sentiment-analysis',model = model, tokenizer = tokenizer, top_k =None)"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": 6,
49
+ "id": "087c3506-5d27-4dd6-9377-fb34e6926698",
50
+ "metadata": {},
51
+ "outputs": [],
52
+ "source": [
53
+ "inputs=['This is a rather confusing statement','I do not want to bee seen with you Kusakabe','Rin chan was elegant in dismissing your favours','Damn you! Bonn-kun']"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": 7,
59
+ "id": "f5683415-239a-4e68-8f4c-1b9ba8295787",
60
+ "metadata": {},
61
+ "outputs": [
62
+ {
63
+ "data": {
64
+ "text/plain": [
65
+ "[[{'label': 'DISGUST', 'score': 0.2899283468723297}],\n",
66
+ " [{'label': 'DISGUST', 'score': 0.20709046721458435}],\n",
67
+ " [{'label': 'OPTIMISM', 'score': 0.1878553181886673}],\n",
68
+ " [{'label': 'ANGER', 'score': 0.46816307306289673}]]"
69
+ ]
70
+ },
71
+ "execution_count": 7,
72
+ "metadata": {},
73
+ "output_type": "execute_result"
74
+ }
75
+ ],
76
+ "source": [
77
+ "classifier(inputs)"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": 8,
83
+ "id": "9b45cd86-cd63-40b1-81ff-7b510ac94c8d",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "statement='Today I did not finish my project and stayed silently away from meetings but my boss found it out and shouted at me in front of a female colleague '"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 9,
93
+ "id": "a7361b72-d959-4993-80cf-5c0d65f3e703",
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "def classify (statement):\n",
98
+ " preds = det_classer(statement)\n",
99
+ " return {label}"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": 10,
105
+ "id": "9b6bff6a-3a70-48d8-8b03-1d8327278cad",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "import gradio as gr"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 11,
115
+ "id": "d1aa90b3-678f-4ae0-bfa7-6018034c5b3e",
116
+ "metadata": {},
117
+ "outputs": [
118
+ {
119
+ "name": "stdout",
120
+ "output_type": "stream",
121
+ "text": [
122
+ "Running on local URL: http://127.0.0.1:7860\n",
123
+ "\n",
124
+ "To create a public link, set `share=True` in `launch()`.\n"
125
+ ]
126
+ },
127
+ {
128
+ "data": {
129
+ "text/html": [
130
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
131
+ ],
132
+ "text/plain": [
133
+ "<IPython.core.display.HTML object>"
134
+ ]
135
+ },
136
+ "metadata": {},
137
+ "output_type": "display_data"
138
+ },
139
+ {
140
+ "data": {
141
+ "text/plain": []
142
+ },
143
+ "execution_count": 11,
144
+ "metadata": {},
145
+ "output_type": "execute_result"
146
+ },
147
+ {
148
+ "name": "stderr",
149
+ "output_type": "stream",
150
+ "text": [
151
+ "Traceback (most recent call last):\n",
152
+ " File \"/home/umesh/conda/lib/python3.10/site-packages/gradio/queueing.py\", line 527, in process_events\n",
153
+ " response = await route_utils.call_process_api(\n",
154
+ " File \"/home/umesh/conda/lib/python3.10/site-packages/gradio/route_utils.py\", line 261, in call_process_api\n",
155
+ " output = await app.get_blocks().process_api(\n",
156
+ " File \"/home/umesh/conda/lib/python3.10/site-packages/gradio/blocks.py\", line 1795, in process_api\n",
157
+ " data = await self.postprocess_data(fn_index, result[\"prediction\"], state)\n",
158
+ " File \"/home/umesh/conda/lib/python3.10/site-packages/gradio/blocks.py\", line 1623, in postprocess_data\n",
159
+ " prediction_value = block.postprocess(prediction_value)\n",
160
+ " File \"/home/umesh/conda/lib/python3.10/site-packages/gradio/components/label.py\", line 137, in postprocess\n",
161
+ " raise ValueError(\n",
162
+ "ValueError: The `Label` output interface expects one of: a string label, or an int label, a float label, or a dictionary whose keys are labels and values are confidences. Instead, got a <class 'list'>\n"
163
+ ]
164
+ }
165
+ ],
166
+ "source": [
167
+ "demo = gr.Interface(fn=classify, inputs='text',outputs=gr.Label())\n",
168
+ "demo.launch()"
169
+ ]
170
+ },
171
+ {
172
+ "cell_type": "code",
173
+ "execution_count": null,
174
+ "id": "e7852458-9afc-4443-bfc8-ebd16909dc6a",
175
+ "metadata": {},
176
+ "outputs": [],
177
+ "source": []
178
+ }
179
+ ],
180
+ "metadata": {
181
+ "kernelspec": {
182
+ "display_name": "Python 3 (ipykernel)",
183
+ "language": "python",
184
+ "name": "python3"
185
+ },
186
+ "language_info": {
187
+ "codemirror_mode": {
188
+ "name": "ipython",
189
+ "version": 3
190
+ },
191
+ "file_extension": ".py",
192
+ "mimetype": "text/x-python",
193
+ "name": "python",
194
+ "nbconvert_exporter": "python",
195
+ "pygments_lexer": "ipython3",
196
+ "version": "3.10.13"
197
+ }
198
+ },
199
+ "nbformat": 4,
200
+ "nbformat_minor": 5
201
+ }
albert/.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "albert/albert-base-v2",
3
+ "architectures": [
4
+ "AlbertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "LABEL_0",
18
+ "1": "LABEL_1",
19
+ "2": "LABEL_2",
20
+ "3": "LABEL_3",
21
+ "4": "LABEL_4",
22
+ "5": "LABEL_5",
23
+ "6": "LABEL_6",
24
+ "7": "LABEL_7",
25
+ "8": "LABEL_8",
26
+ "9": "LABEL_9",
27
+ "10": "LABEL_10",
28
+ "11": "LABEL_11"
29
+ },
30
+ "initializer_range": 0.02,
31
+ "inner_group_num": 1,
32
+ "intermediate_size": 3072,
33
+ "label2id": {
34
+ "LABEL_0": 0,
35
+ "LABEL_1": 1,
36
+ "LABEL_10": 10,
37
+ "LABEL_11": 11,
38
+ "LABEL_2": 2,
39
+ "LABEL_3": 3,
40
+ "LABEL_4": 4,
41
+ "LABEL_5": 5,
42
+ "LABEL_6": 6,
43
+ "LABEL_7": 7,
44
+ "LABEL_8": 8,
45
+ "LABEL_9": 9
46
+ },
47
+ "layer_norm_eps": 1e-12,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "albert",
50
+ "net_structure_type": 0,
51
+ "num_attention_heads": 12,
52
+ "num_hidden_groups": 1,
53
+ "num_hidden_layers": 12,
54
+ "num_memory_blocks": 0,
55
+ "pad_token_id": 0,
56
+ "position_embedding_type": "absolute",
57
+ "problem_type": "single_label_classification",
58
+ "torch_dtype": "float32",
59
+ "transformers_version": "4.40.1",
60
+ "type_vocab_size": 2,
61
+ "vocab_size": 30000
62
+ }
albert/Untitled.ipynb ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 2,
6
+ "id": "8804bc60-c9e2-4713-9800-1bc2fea11241",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stderr",
11
+ "output_type": "stream",
12
+ "text": [
13
+ "/home/umesh/conda/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
14
+ " from .autonotebook import tqdm as notebook_tqdm\n"
15
+ ]
16
+ }
17
+ ],
18
+ "source": [
19
+ "from transformers import pipeline"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 3,
25
+ "id": "322cd68e-9257-4d07-aafc-19e9072f1bba",
26
+ "metadata": {},
27
+ "outputs": [],
28
+ "source": [
29
+ "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
30
+ "\n",
31
+ "model = AutoModelForSequenceClassification.from_pretrained('.')\n",
32
+ "tokenizer = AutoTokenizer.from_pretrained('.')"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 4,
38
+ "id": "fde22c8f-4d57-4544-bc2b-55e4dbbc5fd3",
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "classifier = pipeline('sentiment-analysis',model = model, tokenizer = tokenizer, top_k =1)\n",
43
+ "det_classer = pipeline('sentiment-analysis',model = model, tokenizer = tokenizer, top_k =None)"
44
+ ]
45
+ },
46
+ {
47
+ "cell_type": "code",
48
+ "execution_count": 5,
49
+ "id": "087c3506-5d27-4dd6-9377-fb34e6926698",
50
+ "metadata": {},
51
+ "outputs": [],
52
+ "source": [
53
+ "inputs=['This is a rather confusing statement','I do not want to bee seen with you Kusakabe','Rin chan was elegant in dismissing your favours','Damn you! Bonn-kun']"
54
+ ]
55
+ },
56
+ {
57
+ "cell_type": "code",
58
+ "execution_count": 6,
59
+ "id": "f5683415-239a-4e68-8f4c-1b9ba8295787",
60
+ "metadata": {},
61
+ "outputs": [
62
+ {
63
+ "data": {
64
+ "text/plain": [
65
+ "[[{'label': 'DISGUST', 'score': 0.2899283468723297}],\n",
66
+ " [{'label': 'DISGUST', 'score': 0.20709046721458435}],\n",
67
+ " [{'label': 'OPTIMISM', 'score': 0.1878553181886673}],\n",
68
+ " [{'label': 'ANGER', 'score': 0.46816307306289673}]]"
69
+ ]
70
+ },
71
+ "execution_count": 6,
72
+ "metadata": {},
73
+ "output_type": "execute_result"
74
+ }
75
+ ],
76
+ "source": [
77
+ "classifier(inputs)"
78
+ ]
79
+ },
80
+ {
81
+ "cell_type": "code",
82
+ "execution_count": 7,
83
+ "id": "9b45cd86-cd63-40b1-81ff-7b510ac94c8d",
84
+ "metadata": {},
85
+ "outputs": [],
86
+ "source": [
87
+ "statement='Today I did not finish my project and stayed silently away from meetings but my boss found it out and shouted at me in front of a female colleague '"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "code",
92
+ "execution_count": 8,
93
+ "id": "3ae20452-e327-4550-a40d-f28280aad3c8",
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "x = det_classer(statement)"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": 9,
103
+ "id": "ba091f5c-b98c-49ee-a361-f8937c3693c1",
104
+ "metadata": {},
105
+ "outputs": [
106
+ {
107
+ "data": {
108
+ "text/plain": [
109
+ "'DISGUST'"
110
+ ]
111
+ },
112
+ "execution_count": 9,
113
+ "metadata": {},
114
+ "output_type": "execute_result"
115
+ }
116
+ ],
117
+ "source": [
118
+ "x[0][0]['label']"
119
+ ]
120
+ },
121
+ {
122
+ "cell_type": "code",
123
+ "execution_count": 14,
124
+ "id": "003693e3-1aac-4d67-9c54-f17bcda1af34",
125
+ "metadata": {},
126
+ "outputs": [
127
+ {
128
+ "name": "stdout",
129
+ "output_type": "stream",
130
+ "text": [
131
+ "{'DISGUST': 0.3289419114589691}\n",
132
+ "{'ANGER': 0.2868015170097351}\n",
133
+ "{'SADNESS': 0.12498752772808075}\n",
134
+ "{'FEAR': 0.09882446378469467}\n",
135
+ "{'ANTICIPATION': 0.051536574959754944}\n",
136
+ "{'JOY': 0.03244535252451897}\n",
137
+ "{'SURPRISE': 0.023728473111987114}\n",
138
+ "{'PESSIMISM': 0.020501434803009033}\n",
139
+ "{'OPTIMISM': 0.020457664504647255}\n",
140
+ "{'COMPLICATED': 0.006496347486972809}\n",
141
+ "{'TRUST': 0.0026527740992605686}\n",
142
+ "{'LOVE': 0.0026260693557560444}\n"
143
+ ]
144
+ }
145
+ ],
146
+ "source": [
147
+ "for a in x[0]:\n",
148
+ " print ({a['label']:a['score']})"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 23,
154
+ "id": "a7361b72-d959-4993-80cf-5c0d65f3e703",
155
+ "metadata": {},
156
+ "outputs": [],
157
+ "source": [
158
+ "def classify (statement):\n",
159
+ " preds = det_classer(statement)\n",
160
+ " return {i['label']:float(i['score']) for i in preds[0]}"
161
+ ]
162
+ },
163
+ {
164
+ "cell_type": "code",
165
+ "execution_count": 16,
166
+ "id": "9b6bff6a-3a70-48d8-8b03-1d8327278cad",
167
+ "metadata": {},
168
+ "outputs": [],
169
+ "source": [
170
+ "import gradio as gr"
171
+ ]
172
+ },
173
+ {
174
+ "cell_type": "code",
175
+ "execution_count": 21,
176
+ "id": "d1aa90b3-678f-4ae0-bfa7-6018034c5b3e",
177
+ "metadata": {},
178
+ "outputs": [
179
+ {
180
+ "name": "stdout",
181
+ "output_type": "stream",
182
+ "text": [
183
+ "Running on local URL: http://127.0.0.1:7862\n",
184
+ "IMPORTANT: You are using gradio version 4.26.0, however version 4.29.0 is available, please upgrade.\n",
185
+ "--------\n",
186
+ "\n",
187
+ "To create a public link, set `share=True` in `launch()`.\n"
188
+ ]
189
+ },
190
+ {
191
+ "data": {
192
+ "text/html": [
193
+ "<div><iframe src=\"http://127.0.0.1:7862/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
194
+ ],
195
+ "text/plain": [
196
+ "<IPython.core.display.HTML object>"
197
+ ]
198
+ },
199
+ "metadata": {},
200
+ "output_type": "display_data"
201
+ },
202
+ {
203
+ "data": {
204
+ "text/plain": []
205
+ },
206
+ "execution_count": 21,
207
+ "metadata": {},
208
+ "output_type": "execute_result"
209
+ }
210
+ ],
211
+ "source": [
212
+ "demo = gr.Interface(fn=classify, inputs='text',outputs=gr.Label())\n",
213
+ "demo.launch()"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "id": "e7852458-9afc-4443-bfc8-ebd16909dc6a",
220
+ "metadata": {},
221
+ "outputs": [],
222
+ "source": []
223
+ }
224
+ ],
225
+ "metadata": {
226
+ "kernelspec": {
227
+ "display_name": "Python 3 (ipykernel)",
228
+ "language": "python",
229
+ "name": "python3"
230
+ },
231
+ "language_info": {
232
+ "codemirror_mode": {
233
+ "name": "ipython",
234
+ "version": 3
235
+ },
236
+ "file_extension": ".py",
237
+ "mimetype": "text/x-python",
238
+ "name": "python",
239
+ "nbconvert_exporter": "python",
240
+ "pygments_lexer": "ipython3",
241
+ "version": "3.10.13"
242
+ }
243
+ },
244
+ "nbformat": 4,
245
+ "nbformat_minor": 5
246
+ }
albert/config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "albert/albert-base-v2",
3
+ "architectures": [
4
+ "AlbertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0,
7
+ "bos_token_id": 2,
8
+ "classifier_dropout_prob": 0.1,
9
+ "down_scale_factor": 1,
10
+ "embedding_size": 128,
11
+ "eos_token_id": 3,
12
+ "gap_size": 0,
13
+ "hidden_act": "gelu_new",
14
+ "hidden_dropout_prob": 0,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "ANGER",
18
+ "1": "ANTICIPATION",
19
+ "2": "DISGUST",
20
+ "3": "FEAR",
21
+ "4": "JOY",
22
+ "5": "LOVE",
23
+ "6": "OPTIMISM",
24
+ "7": "PESSIMISM",
25
+ "8": "SADNESS",
26
+ "9": "SURPRISE",
27
+ "10": "TRUST",
28
+ "11": "COMPLICATED"
29
+ },
30
+ "initializer_range": 0.02,
31
+ "inner_group_num": 1,
32
+ "intermediate_size": 3072,
33
+ "label2id": {
34
+ "ANGER": 0,
35
+ "ANTICIPATION": 1,
36
+ "TRUST": 10,
37
+ "COMPLICATED": 11,
38
+ "DISGUST": 2,
39
+ "FEAR": 3,
40
+ "JOY": 4,
41
+ "LOVE": 5,
42
+ "OPTIMISM": 6,
43
+ "PESSIMISM": 7,
44
+ "SADNESS": 8,
45
+ "SURPRISE": 9
46
+ },
47
+ "layer_norm_eps": 1e-12,
48
+ "max_position_embeddings": 512,
49
+ "model_type": "albert",
50
+ "net_structure_type": 0,
51
+ "num_attention_heads": 12,
52
+ "num_hidden_groups": 1,
53
+ "num_hidden_layers": 12,
54
+ "num_memory_blocks": 0,
55
+ "pad_token_id": 0,
56
+ "position_embedding_type": "absolute",
57
+ "problem_type": "single_label_classification",
58
+ "torch_dtype": "float32",
59
+ "transformers_version": "4.40.1",
60
+ "type_vocab_size": 2,
61
+ "vocab_size": 30000
62
+ }
albert/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e43e075ab873a63c42e79634ea3cdf7e4b83220e5dec7bd740491e0d9ade4de
3
+ size 46774672
albert/special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": {
6
+ "content": "[MASK]",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "[SEP]",
14
+ "unk_token": "<unk>"
15
+ }
albert/spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fefb02b667a6c5c2fe27602d28e5fb3428f66ab89c7d6f388e7c8d44a02d0336
3
+ size 760289
albert/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
albert/tokenizer_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_lower_case": true,
6
+ "eos_token": "[SEP]",
7
+ "keep_accents": false,
8
+ "mask_token": {
9
+ "__type": "AddedToken",
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "model_max_length": 512,
17
+ "pad_token": "<pad>",
18
+ "remove_space": true,
19
+ "sep_token": "[SEP]",
20
+ "tokenizer_class": "AlbertTokenizer",
21
+ "unk_token": "<unk>"
22
+ }
albert/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7953cea3ce73edf986db65195dfbaf85c6bd32338ed9940384c4e150b443847a
3
+ size 4984