File size: 4,358 Bytes
c66f90e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ultralytics import YOLO\n",
    "import torch\n",
    "from PIL import Image, ImageDraw, ImageFont\n",
    "import numpy as np\n",
    "import infer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from importlib import reload\n",
    "reload(infer)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
    "model_pose = YOLO('yolov8l-pose.pt')\n",
    "model_pose.to(device)\n",
    "\n",
    "model_det = YOLO('yolov8m.pt')\n",
    "model_det.to(device);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "url = \"image.jpg\"\n",
    "results = model_pose(url)\n",
    "results_det = model_det(url)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def draw_output(image_pil: Image.Image, keypoints: dict):    \n",
    "    draw = ImageDraw.Draw(image_pil)\n",
    "    line_width = 10\n",
    "    font = ImageFont.truetype(\"DejaVuSerif-Bold.ttf\", 70)\n",
    "    \n",
    "    ear, eye = None, None\n",
    "    if keypoints[\"left_ear\"] and keypoints[\"left_eye\"]:\n",
    "        ear = keypoints[\"left_ear\"]\n",
    "        eye = keypoints[\"left_eye\"]\n",
    "    elif keypoints[\"right_ear\"] and keypoints[\"right_eye\"]:\n",
    "        ear = keypoints[\"right_ear\"]\n",
    "        eye = keypoints[\"right_eye\"]\n",
    "    \n",
    "    # draw extended left and right eye lines\n",
    "    if ear and eye:\n",
    "        left_new_point = infer.extend_line(ear, eye, 3)\n",
    "        l1 = [ear, left_new_point]\n",
    "        draw.line(l1, fill='red', width=line_width)\n",
    "        # draw a horizontal line from ear forwards\n",
    "        ear = np.array(ear)\n",
    "        l1 = np.array(l1)\n",
    "        l1_vector = l1[1] - l1[0]\n",
    "        x_s = np.sign(l1_vector)[0]\n",
    "        length_l1 = np.linalg.norm(l1_vector)\n",
    "        p2 = ear + np.array([length_l1*x_s, 0])\n",
    "        ear = tuple(ear.tolist())\n",
    "        l = [ear, tuple(p2.tolist())]\n",
    "        draw.line(l, fill='gray', width=line_width//2)\n",
    "        # draw angle\n",
    "        angle = infer.calculate_angle_to_horizontal(l1_vector)\n",
    "        draw.text(ear, f'{angle:.2f}', fill='red', font=font)\n",
    "        print(infer.get_eye_angles(keypoints))\n",
    "\n",
    "\n",
    "    # draw elbow angles\n",
    "    left_elbow_angle, right_elbow_angle = infer.get_elbow_angles(keypoints)\n",
    "    if left_elbow_angle:\n",
    "        draw.text(keypoints['left_elbow'], f'{left_elbow_angle:.2f}', fill='red', font=font)\n",
    "        # draw polyline for left arm\n",
    "        draw.line([keypoints['left_shoulder'], keypoints['left_elbow'], keypoints['left_wrist']], fill='blue', width=line_width)\n",
    "    if right_elbow_angle:\n",
    "        draw.text(keypoints['right_elbow'], f'{right_elbow_angle:.2f}', fill='red', font=font)\n",
    "        # draw polyline for right arm\n",
    "        draw.line([keypoints['right_shoulder'], keypoints['right_elbow'], keypoints['right_wrist']], fill='blue', width=line_width)\n",
    "\n",
    "    return image_pil"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "keypoints = infer.get_keypoints(results[0])\n",
    "img = Image.open(url)\n",
    "img = draw_output(img, keypoints)\n",
    "img.resize((800, 800))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}