Spaces:
Sleeping
Sleeping
first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +35 -0
- README.md +3 -0
- app.py +141 -0
- basicsr/.DS_Store +0 -0
- basicsr/__init__.py +4 -0
- basicsr/data/.DS_Store +0 -0
- basicsr/data/__init__.py +101 -0
- basicsr/data/__pycache__/__init__.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/__init__.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/data_util.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/data_util.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/degradations.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/degradations.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/ffhq_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/ffhq_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/paired_image_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/paired_image_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/prefetch_dataloader.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/realesrgan_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/realesrgan_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/realesrgan_paired_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/realesrgan_paired_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/reds_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/reds_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/single_image_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/single_image_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/transforms.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/transforms.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/video_test_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/video_test_dataset.cpython-38.pyc +0 -0
- basicsr/data/__pycache__/vimeo90k_dataset.cpython-310.pyc +0 -0
- basicsr/data/__pycache__/vimeo90k_dataset.cpython-38.pyc +0 -0
- basicsr/data/data_sampler.py +48 -0
- basicsr/data/data_util.py +315 -0
- basicsr/data/degradations.py +765 -0
- basicsr/data/ffhq_dataset.py +80 -0
- basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt +0 -0
- basicsr/data/meta_info/meta_info_REDS4_test_GT.txt +4 -0
- basicsr/data/meta_info/meta_info_REDS_GT.txt +270 -0
- basicsr/data/meta_info/meta_info_REDSofficial4_test_GT.txt +4 -0
- basicsr/data/meta_info/meta_info_REDSval_official_test_GT.txt +30 -0
- basicsr/data/meta_info/meta_info_Vimeo90K_test_GT.txt +0 -0
- basicsr/data/meta_info/meta_info_Vimeo90K_test_fast_GT.txt +1225 -0
- basicsr/data/meta_info/meta_info_Vimeo90K_test_medium_GT.txt +0 -0
- basicsr/data/meta_info/meta_info_Vimeo90K_test_slow_GT.txt +1613 -0
- basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt +0 -0
- basicsr/data/paired_image_dataset.py +106 -0
- basicsr/data/prefetch_dataloader.py +122 -0
- basicsr/data/realesrgan_dataset.py +384 -0
LICENSE
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
S-Lab License 1.0
|
2 |
+
|
3 |
+
Copyright 2024 S-Lab
|
4 |
+
|
5 |
+
Redistribution and use for non-commercial purpose in source and
|
6 |
+
binary forms, with or without modification, are permitted provided
|
7 |
+
that the following conditions are met:
|
8 |
+
|
9 |
+
1. Redistributions of source code must retain the above copyright
|
10 |
+
notice, this list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
2. Redistributions in binary form must reproduce the above copyright
|
13 |
+
notice, this list of conditions and the following disclaimer in
|
14 |
+
the documentation and/or other materials provided with the
|
15 |
+
distribution.
|
16 |
+
|
17 |
+
3. Neither the name of the copyright holder nor the names of its
|
18 |
+
contributors may be used to endorse or promote products derived
|
19 |
+
from this software without specific prior written permission.
|
20 |
+
|
21 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
22 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
23 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
24 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
25 |
+
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
26 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
27 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
28 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
29 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
30 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
31 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
32 |
+
|
33 |
+
In the event that redistribution and/or use for commercial purpose in
|
34 |
+
source or binary forms, with or without modification is required,
|
35 |
+
please contact the contributor(s) of the work.
|
README.md
CHANGED
@@ -5,6 +5,9 @@ colorFrom: green
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.8.0
|
|
|
|
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: other
|
|
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.8.0
|
8 |
+
python_version: 3.10
|
9 |
+
suggested_storage: small
|
10 |
+
models: OAOA/InvSR
|
11 |
app_file: app.py
|
12 |
pinned: false
|
13 |
license: other
|
app.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Power by Zongsheng Yue 2024-12-11 17:17:41
|
4 |
+
|
5 |
+
import spaces
|
6 |
+
import warnings
|
7 |
+
warnings.filterwarnings("ignore")
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import numpy as np
|
11 |
+
import gradio as gr
|
12 |
+
from pathlib import Path
|
13 |
+
from omegaconf import OmegaConf
|
14 |
+
from sampler_invsr import InvSamplerSR
|
15 |
+
|
16 |
+
from utils import util_common
|
17 |
+
from utils import util_image
|
18 |
+
from basicsr.utils.download_util import load_file_from_url
|
19 |
+
|
20 |
+
def get_configs(num_steps=1, chopping_size=128, seed=12345):
|
21 |
+
configs = OmegaConf.load("./configs/sample-sd-turbo.yaml")
|
22 |
+
|
23 |
+
if num_steps == 1:
|
24 |
+
configs.timesteps = [200,]
|
25 |
+
elif num_steps == 2:
|
26 |
+
configs.timesteps = [200, 100]
|
27 |
+
elif num_steps == 3:
|
28 |
+
configs.timesteps = [200, 100, 50]
|
29 |
+
elif num_steps == 4:
|
30 |
+
configs.timesteps = [200, 150, 100, 50]
|
31 |
+
elif num_steps == 5:
|
32 |
+
configs.timesteps = [250, 200, 150, 100, 50]
|
33 |
+
else:
|
34 |
+
assert num_steps <= 250
|
35 |
+
configs.timesteps = np.linspace(
|
36 |
+
start=250, stop=0, num=num_steps, endpoint=False, dtype=np.int64()
|
37 |
+
).tolist()
|
38 |
+
print(f'Setting timesteps for inference: {configs.timesteps}')
|
39 |
+
|
40 |
+
# path to save noise predictor
|
41 |
+
started_ckpt_path = "noise_predictor_sd_turbo_v5.pth"
|
42 |
+
# started_ckpt_dir = "./weights"
|
43 |
+
# util_common.mkdir(started_ckpt_dir, delete=False, parents=True)
|
44 |
+
# started_ckpt_path = Path(started_ckpt_dir) / started_ckpt_name
|
45 |
+
# if not started_ckpt_path.exists():
|
46 |
+
# load_file_from_url(
|
47 |
+
# url="https://huggingface.co/OAOA/InvSR/resolve/main/noise_predictor_sd_turbo_v5.pth",
|
48 |
+
# model_dir=started_ckpt_dir,
|
49 |
+
# progress=True,
|
50 |
+
# file_name=started_ckpt_name,
|
51 |
+
# )
|
52 |
+
configs.model_start.ckpt_path = started_ckpt_path
|
53 |
+
|
54 |
+
configs.bs = 1
|
55 |
+
configs.seed = 12345
|
56 |
+
configs.basesr.chopping.pch_size = chopping_size
|
57 |
+
|
58 |
+
return configs
|
59 |
+
|
60 |
+
@spaces.GPU
|
61 |
+
def predict(in_path, num_steps=1, chopping_size=128, seed=12345):
|
62 |
+
configs = get_configs(num_steps=num_steps, chopping_size=chopping_size, seed=12345)
|
63 |
+
|
64 |
+
sampler = InvSamplerSR(configs)
|
65 |
+
|
66 |
+
out_dir = Path('invsr_output')
|
67 |
+
if not out_dir.exists():
|
68 |
+
out_dir.mkdir()
|
69 |
+
sampler.inference(in_path, out_path=out_dir, bs=1)
|
70 |
+
|
71 |
+
out_path = out_dir / f"{Path(in_path).stem}.png"
|
72 |
+
assert out_path.exists(), 'Super-resolution failed!'
|
73 |
+
im_sr = util_image.imread(out_path, chn="rgb", dtype="uint8")
|
74 |
+
|
75 |
+
return im_sr, str(out_path)
|
76 |
+
|
77 |
+
title = "Arbitrary-steps Image Super-resolution via Diffusion Inversion"
|
78 |
+
description = r"""
|
79 |
+
<b>Official Gradio demo</b> for <a href='https://github.com/zsyOAOA/InvSR' target='_blank'><b>Arbitrary-steps Image Super-resolution via Diffuion Inversion</b></a>.<br>
|
80 |
+
🔥 InvSR is an image super-resolution method via Diffusion Inversion, supporting arbitrary sampling steps.<br>
|
81 |
+
"""
|
82 |
+
article = r"""
|
83 |
+
If you've found InvSR useful for your research or projects, please show your support by ⭐ the <a href='https://github.com/zsyOAOA/InvSR' target='_blank'>Github Repo</a>. Thanks!
|
84 |
+
[![GitHub Stars](https://img.shields.io/github/stars/zsyOAOA/InvSR?affiliations=OWNER&color=green&style=social)](https://github.com/zsyOAOA/InvSR)
|
85 |
+
|
86 |
+
---
|
87 |
+
If our work is useful for your research, please consider citing:
|
88 |
+
```bibtex
|
89 |
+
@article{yue2024InvSR,
|
90 |
+
title={Arbitrary-steps Image Super-resolution via Diffusion Inversion},
|
91 |
+
author={Yue, Zongsheng and Kang, Liao and Loy, Chen Change},
|
92 |
+
journal = {arXiv preprint arXiv:2412.09013},
|
93 |
+
year={2024},
|
94 |
+
}
|
95 |
+
```
|
96 |
+
|
97 |
+
📋 **License**
|
98 |
+
|
99 |
+
This project is licensed under <a rel="license" href="https://github.com/zsyOAOA/InvSR/blob/master/LICENSE">S-Lab License 1.0</a>.
|
100 |
+
Redistribution and use for non-commercial purposes should follow this license.
|
101 |
+
|
102 |
+
📧 **Contact**
|
103 |
+
|
104 |
+
If you have any questions, please feel free to contact me via <b>[email protected]</b>.
|
105 |
+
![visitors](https://visitor-badge.laobi.icu/badge?page_id=zsyOAOA/InvSR)
|
106 |
+
"""
|
107 |
+
demo = gr.Interface(
|
108 |
+
fn=predict,
|
109 |
+
inputs=[
|
110 |
+
gr.Image(type="filepath", label="Input: Low Quality Image"),
|
111 |
+
gr.Dropdown(
|
112 |
+
choices=[1,2,3,4,5],
|
113 |
+
value=1,
|
114 |
+
label="Number of steps",
|
115 |
+
),
|
116 |
+
gr.Dropdown(
|
117 |
+
choices=[128, 256],
|
118 |
+
value=128,
|
119 |
+
label="Chopping size",
|
120 |
+
),
|
121 |
+
gr.Number(value=12345, precision=0, label="Ranom seed")
|
122 |
+
],
|
123 |
+
outputs=[
|
124 |
+
gr.Image(type="numpy", label="Output: High Quality Image"),
|
125 |
+
gr.File(label="Download the output")
|
126 |
+
],
|
127 |
+
title=title,
|
128 |
+
description=description,
|
129 |
+
article=article,
|
130 |
+
examples=[
|
131 |
+
['./testdata/RealSet80/29.jpg', 3, 128, 12345],
|
132 |
+
['./testdata/RealSet80/32.jpg', 1, 128, 12345],
|
133 |
+
['./testdata/RealSet80/0030.jpg', 1, 128, 12345],
|
134 |
+
['./testdata/RealSet80/2684538-PH.jpg', 1, 128, 12345],
|
135 |
+
['./testdata/RealSet80/oldphoto6.png', 1, 128, 12345],
|
136 |
+
]
|
137 |
+
)
|
138 |
+
|
139 |
+
demo.queue(max_size=5)
|
140 |
+
demo.launch(share=True)
|
141 |
+
|
basicsr/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
basicsr/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://github.com/xinntao/BasicSR
|
2 |
+
# flake8: noqa
|
3 |
+
from .data import *
|
4 |
+
from .utils import *
|
basicsr/data/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
basicsr/data/__init__.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import torch.utils.data
|
6 |
+
from copy import deepcopy
|
7 |
+
from functools import partial
|
8 |
+
from os import path as osp
|
9 |
+
|
10 |
+
from basicsr.data.prefetch_dataloader import PrefetchDataLoader
|
11 |
+
from basicsr.utils import get_root_logger, scandir
|
12 |
+
from basicsr.utils.dist_util import get_dist_info
|
13 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
14 |
+
|
15 |
+
__all__ = ['build_dataset', 'build_dataloader']
|
16 |
+
|
17 |
+
# automatically scan and import dataset modules for registry
|
18 |
+
# scan all the files under the data folder with '_dataset' in file names
|
19 |
+
data_folder = osp.dirname(osp.abspath(__file__))
|
20 |
+
dataset_filenames = [osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py')]
|
21 |
+
# import all the dataset modules
|
22 |
+
_dataset_modules = [importlib.import_module(f'basicsr.data.{file_name}') for file_name in dataset_filenames]
|
23 |
+
|
24 |
+
|
25 |
+
def build_dataset(dataset_opt):
|
26 |
+
"""Build dataset from options.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
dataset_opt (dict): Configuration for dataset. It must contain:
|
30 |
+
name (str): Dataset name.
|
31 |
+
type (str): Dataset type.
|
32 |
+
"""
|
33 |
+
dataset_opt = deepcopy(dataset_opt)
|
34 |
+
dataset = DATASET_REGISTRY.get(dataset_opt['type'])(dataset_opt)
|
35 |
+
logger = get_root_logger()
|
36 |
+
logger.info(f'Dataset [{dataset.__class__.__name__}] - {dataset_opt["name"]} is built.')
|
37 |
+
return dataset
|
38 |
+
|
39 |
+
|
40 |
+
def build_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None):
|
41 |
+
"""Build dataloader.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
dataset (torch.utils.data.Dataset): Dataset.
|
45 |
+
dataset_opt (dict): Dataset options. It contains the following keys:
|
46 |
+
phase (str): 'train' or 'val'.
|
47 |
+
num_worker_per_gpu (int): Number of workers for each GPU.
|
48 |
+
batch_size_per_gpu (int): Training batch size for each GPU.
|
49 |
+
num_gpu (int): Number of GPUs. Used only in the train phase.
|
50 |
+
Default: 1.
|
51 |
+
dist (bool): Whether in distributed training. Used only in the train
|
52 |
+
phase. Default: False.
|
53 |
+
sampler (torch.utils.data.sampler): Data sampler. Default: None.
|
54 |
+
seed (int | None): Seed. Default: None
|
55 |
+
"""
|
56 |
+
phase = dataset_opt['phase']
|
57 |
+
rank, _ = get_dist_info()
|
58 |
+
if phase == 'train':
|
59 |
+
if dist: # distributed training
|
60 |
+
batch_size = dataset_opt['batch_size_per_gpu']
|
61 |
+
num_workers = dataset_opt['num_worker_per_gpu']
|
62 |
+
else: # non-distributed training
|
63 |
+
multiplier = 1 if num_gpu == 0 else num_gpu
|
64 |
+
batch_size = dataset_opt['batch_size_per_gpu'] * multiplier
|
65 |
+
num_workers = dataset_opt['num_worker_per_gpu'] * multiplier
|
66 |
+
dataloader_args = dict(
|
67 |
+
dataset=dataset,
|
68 |
+
batch_size=batch_size,
|
69 |
+
shuffle=False,
|
70 |
+
num_workers=num_workers,
|
71 |
+
sampler=sampler,
|
72 |
+
drop_last=True)
|
73 |
+
if sampler is None:
|
74 |
+
dataloader_args['shuffle'] = True
|
75 |
+
dataloader_args['worker_init_fn'] = partial(
|
76 |
+
worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None
|
77 |
+
elif phase in ['val', 'test']: # validation
|
78 |
+
dataloader_args = dict(dataset=dataset, batch_size=1, shuffle=False, num_workers=0)
|
79 |
+
else:
|
80 |
+
raise ValueError(f"Wrong dataset phase: {phase}. Supported ones are 'train', 'val' and 'test'.")
|
81 |
+
|
82 |
+
dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False)
|
83 |
+
dataloader_args['persistent_workers'] = dataset_opt.get('persistent_workers', False)
|
84 |
+
|
85 |
+
prefetch_mode = dataset_opt.get('prefetch_mode')
|
86 |
+
if prefetch_mode == 'cpu': # CPUPrefetcher
|
87 |
+
num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1)
|
88 |
+
logger = get_root_logger()
|
89 |
+
logger.info(f'Use {prefetch_mode} prefetch dataloader: num_prefetch_queue = {num_prefetch_queue}')
|
90 |
+
return PrefetchDataLoader(num_prefetch_queue=num_prefetch_queue, **dataloader_args)
|
91 |
+
else:
|
92 |
+
# prefetch_mode=None: Normal dataloader
|
93 |
+
# prefetch_mode='cuda': dataloader for CUDAPrefetcher
|
94 |
+
return torch.utils.data.DataLoader(**dataloader_args)
|
95 |
+
|
96 |
+
|
97 |
+
def worker_init_fn(worker_id, num_workers, rank, seed):
|
98 |
+
# Set the worker seed to num_workers * rank + worker_id + seed
|
99 |
+
worker_seed = num_workers * rank + worker_id + seed
|
100 |
+
np.random.seed(worker_seed)
|
101 |
+
random.seed(worker_seed)
|
basicsr/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
basicsr/data/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (3.59 kB). View file
|
|
basicsr/data/__pycache__/data_util.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
basicsr/data/__pycache__/data_util.cpython-38.pyc
ADDED
Binary file (11.2 kB). View file
|
|
basicsr/data/__pycache__/degradations.cpython-310.pyc
ADDED
Binary file (20.3 kB). View file
|
|
basicsr/data/__pycache__/degradations.cpython-38.pyc
ADDED
Binary file (21.7 kB). View file
|
|
basicsr/data/__pycache__/ffhq_dataset.cpython-310.pyc
ADDED
Binary file (3.08 kB). View file
|
|
basicsr/data/__pycache__/ffhq_dataset.cpython-38.pyc
ADDED
Binary file (3.02 kB). View file
|
|
basicsr/data/__pycache__/paired_image_dataset.cpython-310.pyc
ADDED
Binary file (3.88 kB). View file
|
|
basicsr/data/__pycache__/paired_image_dataset.cpython-38.pyc
ADDED
Binary file (3.88 kB). View file
|
|
basicsr/data/__pycache__/prefetch_dataloader.cpython-310.pyc
ADDED
Binary file (4.36 kB). View file
|
|
basicsr/data/__pycache__/prefetch_dataloader.cpython-38.pyc
ADDED
Binary file (4.37 kB). View file
|
|
basicsr/data/__pycache__/realesrgan_dataset.cpython-310.pyc
ADDED
Binary file (9.39 kB). View file
|
|
basicsr/data/__pycache__/realesrgan_dataset.cpython-38.pyc
ADDED
Binary file (5.1 kB). View file
|
|
basicsr/data/__pycache__/realesrgan_paired_dataset.cpython-310.pyc
ADDED
Binary file (4.06 kB). View file
|
|
basicsr/data/__pycache__/realesrgan_paired_dataset.cpython-38.pyc
ADDED
Binary file (4.03 kB). View file
|
|
basicsr/data/__pycache__/reds_dataset.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
basicsr/data/__pycache__/reds_dataset.cpython-38.pyc
ADDED
Binary file (10.7 kB). View file
|
|
basicsr/data/__pycache__/single_image_dataset.cpython-310.pyc
ADDED
Binary file (2.85 kB). View file
|
|
basicsr/data/__pycache__/single_image_dataset.cpython-38.pyc
ADDED
Binary file (2.82 kB). View file
|
|
basicsr/data/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (6 kB). View file
|
|
basicsr/data/__pycache__/transforms.cpython-38.pyc
ADDED
Binary file (6.04 kB). View file
|
|
basicsr/data/__pycache__/video_test_dataset.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
basicsr/data/__pycache__/video_test_dataset.cpython-38.pyc
ADDED
Binary file (10.3 kB). View file
|
|
basicsr/data/__pycache__/vimeo90k_dataset.cpython-310.pyc
ADDED
Binary file (5.8 kB). View file
|
|
basicsr/data/__pycache__/vimeo90k_dataset.cpython-38.pyc
ADDED
Binary file (5.79 kB). View file
|
|
basicsr/data/data_sampler.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.utils.data.sampler import Sampler
|
4 |
+
|
5 |
+
|
6 |
+
class EnlargedSampler(Sampler):
|
7 |
+
"""Sampler that restricts data loading to a subset of the dataset.
|
8 |
+
|
9 |
+
Modified from torch.utils.data.distributed.DistributedSampler
|
10 |
+
Support enlarging the dataset for iteration-based training, for saving
|
11 |
+
time when restart the dataloader after each epoch
|
12 |
+
|
13 |
+
Args:
|
14 |
+
dataset (torch.utils.data.Dataset): Dataset used for sampling.
|
15 |
+
num_replicas (int | None): Number of processes participating in
|
16 |
+
the training. It is usually the world_size.
|
17 |
+
rank (int | None): Rank of the current process within num_replicas.
|
18 |
+
ratio (int): Enlarging ratio. Default: 1.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, dataset, num_replicas, rank, ratio=1):
|
22 |
+
self.dataset = dataset
|
23 |
+
self.num_replicas = num_replicas
|
24 |
+
self.rank = rank
|
25 |
+
self.epoch = 0
|
26 |
+
self.num_samples = math.ceil(len(self.dataset) * ratio / self.num_replicas)
|
27 |
+
self.total_size = self.num_samples * self.num_replicas
|
28 |
+
|
29 |
+
def __iter__(self):
|
30 |
+
# deterministically shuffle based on epoch
|
31 |
+
g = torch.Generator()
|
32 |
+
g.manual_seed(self.epoch)
|
33 |
+
indices = torch.randperm(self.total_size, generator=g).tolist()
|
34 |
+
|
35 |
+
dataset_size = len(self.dataset)
|
36 |
+
indices = [v % dataset_size for v in indices]
|
37 |
+
|
38 |
+
# subsample
|
39 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
40 |
+
assert len(indices) == self.num_samples
|
41 |
+
|
42 |
+
return iter(indices)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return self.num_samples
|
46 |
+
|
47 |
+
def set_epoch(self, epoch):
|
48 |
+
self.epoch = epoch
|
basicsr/data/data_util.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from os import path as osp
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from basicsr.data.transforms import mod_crop
|
8 |
+
from basicsr.utils import img2tensor, scandir
|
9 |
+
|
10 |
+
|
11 |
+
def read_img_seq(path, require_mod_crop=False, scale=1, return_imgname=False):
|
12 |
+
"""Read a sequence of images from a given folder path.
|
13 |
+
|
14 |
+
Args:
|
15 |
+
path (list[str] | str): List of image paths or image folder path.
|
16 |
+
require_mod_crop (bool): Require mod crop for each image.
|
17 |
+
Default: False.
|
18 |
+
scale (int): Scale factor for mod_crop. Default: 1.
|
19 |
+
return_imgname(bool): Whether return image names. Default False.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
Tensor: size (t, c, h, w), RGB, [0, 1].
|
23 |
+
list[str]: Returned image name list.
|
24 |
+
"""
|
25 |
+
if isinstance(path, list):
|
26 |
+
img_paths = path
|
27 |
+
else:
|
28 |
+
img_paths = sorted(list(scandir(path, full_path=True)))
|
29 |
+
imgs = [cv2.imread(v).astype(np.float32) / 255. for v in img_paths]
|
30 |
+
|
31 |
+
if require_mod_crop:
|
32 |
+
imgs = [mod_crop(img, scale) for img in imgs]
|
33 |
+
imgs = img2tensor(imgs, bgr2rgb=True, float32=True)
|
34 |
+
imgs = torch.stack(imgs, dim=0)
|
35 |
+
|
36 |
+
if return_imgname:
|
37 |
+
imgnames = [osp.splitext(osp.basename(path))[0] for path in img_paths]
|
38 |
+
return imgs, imgnames
|
39 |
+
else:
|
40 |
+
return imgs
|
41 |
+
|
42 |
+
|
43 |
+
def generate_frame_indices(crt_idx, max_frame_num, num_frames, padding='reflection'):
|
44 |
+
"""Generate an index list for reading `num_frames` frames from a sequence
|
45 |
+
of images.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
crt_idx (int): Current center index.
|
49 |
+
max_frame_num (int): Max number of the sequence of images (from 1).
|
50 |
+
num_frames (int): Reading num_frames frames.
|
51 |
+
padding (str): Padding mode, one of
|
52 |
+
'replicate' | 'reflection' | 'reflection_circle' | 'circle'
|
53 |
+
Examples: current_idx = 0, num_frames = 5
|
54 |
+
The generated frame indices under different padding mode:
|
55 |
+
replicate: [0, 0, 0, 1, 2]
|
56 |
+
reflection: [2, 1, 0, 1, 2]
|
57 |
+
reflection_circle: [4, 3, 0, 1, 2]
|
58 |
+
circle: [3, 4, 0, 1, 2]
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
list[int]: A list of indices.
|
62 |
+
"""
|
63 |
+
assert num_frames % 2 == 1, 'num_frames should be an odd number.'
|
64 |
+
assert padding in ('replicate', 'reflection', 'reflection_circle', 'circle'), f'Wrong padding mode: {padding}.'
|
65 |
+
|
66 |
+
max_frame_num = max_frame_num - 1 # start from 0
|
67 |
+
num_pad = num_frames // 2
|
68 |
+
|
69 |
+
indices = []
|
70 |
+
for i in range(crt_idx - num_pad, crt_idx + num_pad + 1):
|
71 |
+
if i < 0:
|
72 |
+
if padding == 'replicate':
|
73 |
+
pad_idx = 0
|
74 |
+
elif padding == 'reflection':
|
75 |
+
pad_idx = -i
|
76 |
+
elif padding == 'reflection_circle':
|
77 |
+
pad_idx = crt_idx + num_pad - i
|
78 |
+
else:
|
79 |
+
pad_idx = num_frames + i
|
80 |
+
elif i > max_frame_num:
|
81 |
+
if padding == 'replicate':
|
82 |
+
pad_idx = max_frame_num
|
83 |
+
elif padding == 'reflection':
|
84 |
+
pad_idx = max_frame_num * 2 - i
|
85 |
+
elif padding == 'reflection_circle':
|
86 |
+
pad_idx = (crt_idx - num_pad) - (i - max_frame_num)
|
87 |
+
else:
|
88 |
+
pad_idx = i - num_frames
|
89 |
+
else:
|
90 |
+
pad_idx = i
|
91 |
+
indices.append(pad_idx)
|
92 |
+
return indices
|
93 |
+
|
94 |
+
|
95 |
+
def paired_paths_from_lmdb(folders, keys):
|
96 |
+
"""Generate paired paths from lmdb files.
|
97 |
+
|
98 |
+
Contents of lmdb. Taking the `lq.lmdb` for example, the file structure is:
|
99 |
+
|
100 |
+
::
|
101 |
+
|
102 |
+
lq.lmdb
|
103 |
+
├── data.mdb
|
104 |
+
├── lock.mdb
|
105 |
+
├── meta_info.txt
|
106 |
+
|
107 |
+
The data.mdb and lock.mdb are standard lmdb files and you can refer to
|
108 |
+
https://lmdb.readthedocs.io/en/release/ for more details.
|
109 |
+
|
110 |
+
The meta_info.txt is a specified txt file to record the meta information
|
111 |
+
of our datasets. It will be automatically created when preparing
|
112 |
+
datasets by our provided dataset tools.
|
113 |
+
Each line in the txt file records
|
114 |
+
1)image name (with extension),
|
115 |
+
2)image shape,
|
116 |
+
3)compression level, separated by a white space.
|
117 |
+
Example: `baboon.png (120,125,3) 1`
|
118 |
+
|
119 |
+
We use the image name without extension as the lmdb key.
|
120 |
+
Note that we use the same key for the corresponding lq and gt images.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
folders (list[str]): A list of folder path. The order of list should
|
124 |
+
be [input_folder, gt_folder].
|
125 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
126 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
127 |
+
Note that this key is different from lmdb keys.
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
list[str]: Returned path list.
|
131 |
+
"""
|
132 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
133 |
+
f'But got {len(folders)}')
|
134 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
135 |
+
input_folder, gt_folder = folders
|
136 |
+
input_key, gt_key = keys
|
137 |
+
|
138 |
+
if not (input_folder.endswith('.lmdb') and gt_folder.endswith('.lmdb')):
|
139 |
+
raise ValueError(f'{input_key} folder and {gt_key} folder should both in lmdb '
|
140 |
+
f'formats. But received {input_key}: {input_folder}; '
|
141 |
+
f'{gt_key}: {gt_folder}')
|
142 |
+
# ensure that the two meta_info files are the same
|
143 |
+
with open(osp.join(input_folder, 'meta_info.txt')) as fin:
|
144 |
+
input_lmdb_keys = [line.split('.')[0] for line in fin]
|
145 |
+
with open(osp.join(gt_folder, 'meta_info.txt')) as fin:
|
146 |
+
gt_lmdb_keys = [line.split('.')[0] for line in fin]
|
147 |
+
if set(input_lmdb_keys) != set(gt_lmdb_keys):
|
148 |
+
raise ValueError(f'Keys in {input_key}_folder and {gt_key}_folder are different.')
|
149 |
+
else:
|
150 |
+
paths = []
|
151 |
+
for lmdb_key in sorted(input_lmdb_keys):
|
152 |
+
paths.append(dict([(f'{input_key}_path', lmdb_key), (f'{gt_key}_path', lmdb_key)]))
|
153 |
+
return paths
|
154 |
+
|
155 |
+
|
156 |
+
def paired_paths_from_meta_info_file(folders, keys, meta_info_file, filename_tmpl):
|
157 |
+
"""Generate paired paths from an meta information file.
|
158 |
+
|
159 |
+
Each line in the meta information file contains the image names and
|
160 |
+
image shape (usually for gt), separated by a white space.
|
161 |
+
|
162 |
+
Example of an meta information file:
|
163 |
+
```
|
164 |
+
0001_s001.png (480,480,3)
|
165 |
+
0001_s002.png (480,480,3)
|
166 |
+
```
|
167 |
+
|
168 |
+
Args:
|
169 |
+
folders (list[str]): A list of folder path. The order of list should
|
170 |
+
be [input_folder, gt_folder].
|
171 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
172 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
173 |
+
meta_info_file (str): Path to the meta information file.
|
174 |
+
filename_tmpl (str): Template for each filename. Note that the
|
175 |
+
template excludes the file extension. Usually the filename_tmpl is
|
176 |
+
for files in the input folder.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
list[str]: Returned path list.
|
180 |
+
"""
|
181 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
182 |
+
f'But got {len(folders)}')
|
183 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
184 |
+
input_folder, gt_folder = folders
|
185 |
+
input_key, gt_key = keys
|
186 |
+
|
187 |
+
with open(meta_info_file, 'r') as fin:
|
188 |
+
gt_names = [line.strip().split(' ')[0] for line in fin]
|
189 |
+
|
190 |
+
paths = []
|
191 |
+
for gt_name in gt_names:
|
192 |
+
basename, ext = osp.splitext(osp.basename(gt_name))
|
193 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
194 |
+
input_path = osp.join(input_folder, input_name)
|
195 |
+
gt_path = osp.join(gt_folder, gt_name)
|
196 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
197 |
+
return paths
|
198 |
+
|
199 |
+
|
200 |
+
def paired_paths_from_folder(folders, keys, filename_tmpl):
|
201 |
+
"""Generate paired paths from folders.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
folders (list[str]): A list of folder path. The order of list should
|
205 |
+
be [input_folder, gt_folder].
|
206 |
+
keys (list[str]): A list of keys identifying folders. The order should
|
207 |
+
be in consistent with folders, e.g., ['lq', 'gt'].
|
208 |
+
filename_tmpl (str): Template for each filename. Note that the
|
209 |
+
template excludes the file extension. Usually the filename_tmpl is
|
210 |
+
for files in the input folder.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
list[str]: Returned path list.
|
214 |
+
"""
|
215 |
+
assert len(folders) == 2, ('The len of folders should be 2 with [input_folder, gt_folder]. '
|
216 |
+
f'But got {len(folders)}')
|
217 |
+
assert len(keys) == 2, f'The len of keys should be 2 with [input_key, gt_key]. But got {len(keys)}'
|
218 |
+
input_folder, gt_folder = folders
|
219 |
+
input_key, gt_key = keys
|
220 |
+
|
221 |
+
input_paths = list(scandir(input_folder))
|
222 |
+
gt_paths = list(scandir(gt_folder))
|
223 |
+
assert len(input_paths) == len(gt_paths), (f'{input_key} and {gt_key} datasets have different number of images: '
|
224 |
+
f'{len(input_paths)}, {len(gt_paths)}.')
|
225 |
+
paths = []
|
226 |
+
for gt_path in gt_paths:
|
227 |
+
basename, ext = osp.splitext(osp.basename(gt_path))
|
228 |
+
input_name = f'{filename_tmpl.format(basename)}{ext}'
|
229 |
+
input_path = osp.join(input_folder, input_name)
|
230 |
+
assert input_name in input_paths, f'{input_name} is not in {input_key}_paths.'
|
231 |
+
gt_path = osp.join(gt_folder, gt_path)
|
232 |
+
paths.append(dict([(f'{input_key}_path', input_path), (f'{gt_key}_path', gt_path)]))
|
233 |
+
return paths
|
234 |
+
|
235 |
+
|
236 |
+
def paths_from_folder(folder):
|
237 |
+
"""Generate paths from folder.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
folder (str): Folder path.
|
241 |
+
|
242 |
+
Returns:
|
243 |
+
list[str]: Returned path list.
|
244 |
+
"""
|
245 |
+
|
246 |
+
paths = list(scandir(folder))
|
247 |
+
paths = [osp.join(folder, path) for path in paths]
|
248 |
+
return paths
|
249 |
+
|
250 |
+
|
251 |
+
def paths_from_lmdb(folder):
|
252 |
+
"""Generate paths from lmdb.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
folder (str): Folder path.
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
list[str]: Returned path list.
|
259 |
+
"""
|
260 |
+
if not folder.endswith('.lmdb'):
|
261 |
+
raise ValueError(f'Folder {folder}folder should in lmdb format.')
|
262 |
+
with open(osp.join(folder, 'meta_info.txt')) as fin:
|
263 |
+
paths = [line.split('.')[0] for line in fin]
|
264 |
+
return paths
|
265 |
+
|
266 |
+
|
267 |
+
def generate_gaussian_kernel(kernel_size=13, sigma=1.6):
|
268 |
+
"""Generate Gaussian kernel used in `duf_downsample`.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
kernel_size (int): Kernel size. Default: 13.
|
272 |
+
sigma (float): Sigma of the Gaussian kernel. Default: 1.6.
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
np.array: The Gaussian kernel.
|
276 |
+
"""
|
277 |
+
from scipy.ndimage import filters as filters
|
278 |
+
kernel = np.zeros((kernel_size, kernel_size))
|
279 |
+
# set element at the middle to one, a dirac delta
|
280 |
+
kernel[kernel_size // 2, kernel_size // 2] = 1
|
281 |
+
# gaussian-smooth the dirac, resulting in a gaussian filter
|
282 |
+
return filters.gaussian_filter(kernel, sigma)
|
283 |
+
|
284 |
+
|
285 |
+
def duf_downsample(x, kernel_size=13, scale=4):
|
286 |
+
"""Downsamping with Gaussian kernel used in the DUF official code.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
x (Tensor): Frames to be downsampled, with shape (b, t, c, h, w).
|
290 |
+
kernel_size (int): Kernel size. Default: 13.
|
291 |
+
scale (int): Downsampling factor. Supported scale: (2, 3, 4).
|
292 |
+
Default: 4.
|
293 |
+
|
294 |
+
Returns:
|
295 |
+
Tensor: DUF downsampled frames.
|
296 |
+
"""
|
297 |
+
assert scale in (2, 3, 4), f'Only support scale (2, 3, 4), but got {scale}.'
|
298 |
+
|
299 |
+
squeeze_flag = False
|
300 |
+
if x.ndim == 4:
|
301 |
+
squeeze_flag = True
|
302 |
+
x = x.unsqueeze(0)
|
303 |
+
b, t, c, h, w = x.size()
|
304 |
+
x = x.view(-1, 1, h, w)
|
305 |
+
pad_w, pad_h = kernel_size // 2 + scale * 2, kernel_size // 2 + scale * 2
|
306 |
+
x = F.pad(x, (pad_w, pad_w, pad_h, pad_h), 'reflect')
|
307 |
+
|
308 |
+
gaussian_filter = generate_gaussian_kernel(kernel_size, 0.4 * scale)
|
309 |
+
gaussian_filter = torch.from_numpy(gaussian_filter).type_as(x).unsqueeze(0).unsqueeze(0)
|
310 |
+
x = F.conv2d(x, gaussian_filter, stride=scale)
|
311 |
+
x = x[:, :, 2:-2, 2:-2]
|
312 |
+
x = x.view(b, t, c, x.size(2), x.size(3))
|
313 |
+
if squeeze_flag:
|
314 |
+
x = x.squeeze(0)
|
315 |
+
return x
|
basicsr/data/degradations.py
ADDED
@@ -0,0 +1,765 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from scipy import special
|
7 |
+
from scipy.stats import multivariate_normal
|
8 |
+
# from torchvision.transforms.functional_tensor import rgb_to_grayscale
|
9 |
+
from torchvision.transforms.functional import rgb_to_grayscale
|
10 |
+
|
11 |
+
# -------------------------------------------------------------------- #
|
12 |
+
# --------------------------- blur kernels --------------------------- #
|
13 |
+
# -------------------------------------------------------------------- #
|
14 |
+
|
15 |
+
|
16 |
+
# --------------------------- util functions --------------------------- #
|
17 |
+
def sigma_matrix2(sig_x, sig_y, theta):
|
18 |
+
"""Calculate the rotated sigma matrix (two dimensional matrix).
|
19 |
+
|
20 |
+
Args:
|
21 |
+
sig_x (float):
|
22 |
+
sig_y (float):
|
23 |
+
theta (float): Radian measurement.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
ndarray: Rotated sigma matrix.
|
27 |
+
"""
|
28 |
+
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]])
|
29 |
+
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
|
30 |
+
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T))
|
31 |
+
|
32 |
+
|
33 |
+
def mesh_grid(kernel_size):
|
34 |
+
"""Generate the mesh grid, centering at zero.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
kernel_size (int):
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
xy (ndarray): with the shape (kernel_size, kernel_size, 2)
|
41 |
+
xx (ndarray): with the shape (kernel_size, kernel_size)
|
42 |
+
yy (ndarray): with the shape (kernel_size, kernel_size)
|
43 |
+
"""
|
44 |
+
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.)
|
45 |
+
xx, yy = np.meshgrid(ax, ax)
|
46 |
+
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size,
|
47 |
+
1))).reshape(kernel_size, kernel_size, 2)
|
48 |
+
return xy, xx, yy
|
49 |
+
|
50 |
+
|
51 |
+
def pdf2(sigma_matrix, grid):
|
52 |
+
"""Calculate PDF of the bivariate Gaussian distribution.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
sigma_matrix (ndarray): with the shape (2, 2)
|
56 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
57 |
+
with the shape (K, K, 2), K is the kernel size.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
kernel (ndarrray): un-normalized kernel.
|
61 |
+
"""
|
62 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
63 |
+
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2))
|
64 |
+
return kernel
|
65 |
+
|
66 |
+
|
67 |
+
def cdf2(d_matrix, grid):
|
68 |
+
"""Calculate the CDF of the standard bivariate Gaussian distribution.
|
69 |
+
Used in skewed Gaussian distribution.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
d_matrix (ndarrasy): skew matrix.
|
73 |
+
grid (ndarray): generated by :func:`mesh_grid`,
|
74 |
+
with the shape (K, K, 2), K is the kernel size.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
cdf (ndarray): skewed cdf.
|
78 |
+
"""
|
79 |
+
rv = multivariate_normal([0, 0], [[1, 0], [0, 1]])
|
80 |
+
grid = np.dot(grid, d_matrix)
|
81 |
+
cdf = rv.cdf(grid)
|
82 |
+
return cdf
|
83 |
+
|
84 |
+
|
85 |
+
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True):
|
86 |
+
"""Generate a bivariate isotropic or anisotropic Gaussian kernel.
|
87 |
+
|
88 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
kernel_size (int):
|
92 |
+
sig_x (float):
|
93 |
+
sig_y (float):
|
94 |
+
theta (float): Radian measurement.
|
95 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
96 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
97 |
+
isotropic (bool):
|
98 |
+
|
99 |
+
Returns:
|
100 |
+
kernel (ndarray): normalized kernel.
|
101 |
+
"""
|
102 |
+
if grid is None:
|
103 |
+
grid, _, _ = mesh_grid(kernel_size)
|
104 |
+
if isotropic:
|
105 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
106 |
+
else:
|
107 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
108 |
+
kernel = pdf2(sigma_matrix, grid)
|
109 |
+
kernel = kernel / np.sum(kernel)
|
110 |
+
return kernel
|
111 |
+
|
112 |
+
|
113 |
+
def bivariate_generalized_Gaussian(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
114 |
+
"""Generate a bivariate generalized Gaussian kernel.
|
115 |
+
|
116 |
+
``Paper: Parameter Estimation For Multivariate Generalized Gaussian Distributions``
|
117 |
+
|
118 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
kernel_size (int):
|
122 |
+
sig_x (float):
|
123 |
+
sig_y (float):
|
124 |
+
theta (float): Radian measurement.
|
125 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
126 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
127 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
kernel (ndarray): normalized kernel.
|
131 |
+
"""
|
132 |
+
if grid is None:
|
133 |
+
grid, _, _ = mesh_grid(kernel_size)
|
134 |
+
if isotropic:
|
135 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
136 |
+
else:
|
137 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
138 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
139 |
+
kernel = np.exp(-0.5 * np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta))
|
140 |
+
kernel = kernel / np.sum(kernel)
|
141 |
+
return kernel
|
142 |
+
|
143 |
+
|
144 |
+
def bivariate_plateau(kernel_size, sig_x, sig_y, theta, beta, grid=None, isotropic=True):
|
145 |
+
"""Generate a plateau-like anisotropic kernel.
|
146 |
+
|
147 |
+
1 / (1+x^(beta))
|
148 |
+
|
149 |
+
Reference: https://stats.stackexchange.com/questions/203629/is-there-a-plateau-shaped-distribution
|
150 |
+
|
151 |
+
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored.
|
152 |
+
|
153 |
+
Args:
|
154 |
+
kernel_size (int):
|
155 |
+
sig_x (float):
|
156 |
+
sig_y (float):
|
157 |
+
theta (float): Radian measurement.
|
158 |
+
beta (float): shape parameter, beta = 1 is the normal distribution.
|
159 |
+
grid (ndarray, optional): generated by :func:`mesh_grid`,
|
160 |
+
with the shape (K, K, 2), K is the kernel size. Default: None
|
161 |
+
|
162 |
+
Returns:
|
163 |
+
kernel (ndarray): normalized kernel.
|
164 |
+
"""
|
165 |
+
if grid is None:
|
166 |
+
grid, _, _ = mesh_grid(kernel_size)
|
167 |
+
if isotropic:
|
168 |
+
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]])
|
169 |
+
else:
|
170 |
+
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta)
|
171 |
+
inverse_sigma = np.linalg.inv(sigma_matrix)
|
172 |
+
kernel = np.reciprocal(np.power(np.sum(np.dot(grid, inverse_sigma) * grid, 2), beta) + 1)
|
173 |
+
kernel = kernel / np.sum(kernel)
|
174 |
+
return kernel
|
175 |
+
|
176 |
+
|
177 |
+
def random_bivariate_Gaussian(kernel_size,
|
178 |
+
sigma_x_range,
|
179 |
+
sigma_y_range,
|
180 |
+
rotation_range,
|
181 |
+
noise_range=None,
|
182 |
+
isotropic=True):
|
183 |
+
"""Randomly generate bivariate isotropic or anisotropic Gaussian kernels.
|
184 |
+
|
185 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
kernel_size (int):
|
189 |
+
sigma_x_range (tuple): [0.6, 5]
|
190 |
+
sigma_y_range (tuple): [0.6, 5]
|
191 |
+
rotation range (tuple): [-math.pi, math.pi]
|
192 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
193 |
+
[0.75, 1.25]. Default: None
|
194 |
+
|
195 |
+
Returns:
|
196 |
+
kernel (ndarray):
|
197 |
+
"""
|
198 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
199 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
200 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
201 |
+
if isotropic is False:
|
202 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
203 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
204 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
205 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
206 |
+
else:
|
207 |
+
sigma_y = sigma_x
|
208 |
+
rotation = 0
|
209 |
+
|
210 |
+
kernel = bivariate_Gaussian(kernel_size, sigma_x, sigma_y, rotation, isotropic=isotropic)
|
211 |
+
|
212 |
+
# add multiplicative noise
|
213 |
+
if noise_range is not None:
|
214 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
215 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
216 |
+
kernel = kernel * noise
|
217 |
+
kernel = kernel / np.sum(kernel)
|
218 |
+
return kernel
|
219 |
+
|
220 |
+
|
221 |
+
def random_bivariate_generalized_Gaussian(kernel_size,
|
222 |
+
sigma_x_range,
|
223 |
+
sigma_y_range,
|
224 |
+
rotation_range,
|
225 |
+
beta_range,
|
226 |
+
noise_range=None,
|
227 |
+
isotropic=True):
|
228 |
+
"""Randomly generate bivariate generalized Gaussian kernels.
|
229 |
+
|
230 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
kernel_size (int):
|
234 |
+
sigma_x_range (tuple): [0.6, 5]
|
235 |
+
sigma_y_range (tuple): [0.6, 5]
|
236 |
+
rotation range (tuple): [-math.pi, math.pi]
|
237 |
+
beta_range (tuple): [0.5, 8]
|
238 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
239 |
+
[0.75, 1.25]. Default: None
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
kernel (ndarray):
|
243 |
+
"""
|
244 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
245 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
246 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
247 |
+
if isotropic is False:
|
248 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
249 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
250 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
251 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
252 |
+
else:
|
253 |
+
sigma_y = sigma_x
|
254 |
+
rotation = 0
|
255 |
+
|
256 |
+
# assume beta_range[0] < 1 < beta_range[1]
|
257 |
+
if np.random.uniform() < 0.5:
|
258 |
+
beta = np.random.uniform(beta_range[0], 1)
|
259 |
+
else:
|
260 |
+
beta = np.random.uniform(1, beta_range[1])
|
261 |
+
|
262 |
+
kernel = bivariate_generalized_Gaussian(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
263 |
+
|
264 |
+
# add multiplicative noise
|
265 |
+
if noise_range is not None:
|
266 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
267 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
268 |
+
kernel = kernel * noise
|
269 |
+
kernel = kernel / np.sum(kernel)
|
270 |
+
return kernel
|
271 |
+
|
272 |
+
|
273 |
+
def random_bivariate_plateau(kernel_size,
|
274 |
+
sigma_x_range,
|
275 |
+
sigma_y_range,
|
276 |
+
rotation_range,
|
277 |
+
beta_range,
|
278 |
+
noise_range=None,
|
279 |
+
isotropic=True):
|
280 |
+
"""Randomly generate bivariate plateau kernels.
|
281 |
+
|
282 |
+
In the isotropic mode, only `sigma_x_range` is used. `sigma_y_range` and `rotation_range` is ignored.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
kernel_size (int):
|
286 |
+
sigma_x_range (tuple): [0.6, 5]
|
287 |
+
sigma_y_range (tuple): [0.6, 5]
|
288 |
+
rotation range (tuple): [-math.pi/2, math.pi/2]
|
289 |
+
beta_range (tuple): [1, 4]
|
290 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
291 |
+
[0.75, 1.25]. Default: None
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
kernel (ndarray):
|
295 |
+
"""
|
296 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
297 |
+
assert sigma_x_range[0] < sigma_x_range[1], 'Wrong sigma_x_range.'
|
298 |
+
sigma_x = np.random.uniform(sigma_x_range[0], sigma_x_range[1])
|
299 |
+
if isotropic is False:
|
300 |
+
assert sigma_y_range[0] < sigma_y_range[1], 'Wrong sigma_y_range.'
|
301 |
+
assert rotation_range[0] < rotation_range[1], 'Wrong rotation_range.'
|
302 |
+
sigma_y = np.random.uniform(sigma_y_range[0], sigma_y_range[1])
|
303 |
+
rotation = np.random.uniform(rotation_range[0], rotation_range[1])
|
304 |
+
else:
|
305 |
+
sigma_y = sigma_x
|
306 |
+
rotation = 0
|
307 |
+
|
308 |
+
# TODO: this may be not proper
|
309 |
+
if np.random.uniform() < 0.5:
|
310 |
+
beta = np.random.uniform(beta_range[0], 1)
|
311 |
+
else:
|
312 |
+
beta = np.random.uniform(1, beta_range[1])
|
313 |
+
|
314 |
+
kernel = bivariate_plateau(kernel_size, sigma_x, sigma_y, rotation, beta, isotropic=isotropic)
|
315 |
+
# add multiplicative noise
|
316 |
+
if noise_range is not None:
|
317 |
+
assert noise_range[0] < noise_range[1], 'Wrong noise range.'
|
318 |
+
noise = np.random.uniform(noise_range[0], noise_range[1], size=kernel.shape)
|
319 |
+
kernel = kernel * noise
|
320 |
+
kernel = kernel / np.sum(kernel)
|
321 |
+
|
322 |
+
return kernel
|
323 |
+
|
324 |
+
|
325 |
+
def random_mixed_kernels(kernel_list,
|
326 |
+
kernel_prob,
|
327 |
+
kernel_size=21,
|
328 |
+
sigma_x_range=(0.6, 5),
|
329 |
+
sigma_y_range=(0.6, 5),
|
330 |
+
rotation_range=(-math.pi, math.pi),
|
331 |
+
betag_range=(0.5, 8),
|
332 |
+
betap_range=(0.5, 8),
|
333 |
+
noise_range=None):
|
334 |
+
"""Randomly generate mixed kernels.
|
335 |
+
|
336 |
+
Args:
|
337 |
+
kernel_list (tuple): a list name of kernel types,
|
338 |
+
support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso',
|
339 |
+
'plateau_aniso']
|
340 |
+
kernel_prob (tuple): corresponding kernel probability for each
|
341 |
+
kernel type
|
342 |
+
kernel_size (int):
|
343 |
+
sigma_x_range (tuple): [0.6, 5]
|
344 |
+
sigma_y_range (tuple): [0.6, 5]
|
345 |
+
rotation range (tuple): [-math.pi, math.pi]
|
346 |
+
beta_range (tuple): [0.5, 8]
|
347 |
+
noise_range(tuple, optional): multiplicative kernel noise,
|
348 |
+
[0.75, 1.25]. Default: None
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
kernel (ndarray):
|
352 |
+
"""
|
353 |
+
kernel_type = random.choices(kernel_list, kernel_prob)[0]
|
354 |
+
if kernel_type == 'iso':
|
355 |
+
kernel = random_bivariate_Gaussian(
|
356 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True)
|
357 |
+
elif kernel_type == 'aniso':
|
358 |
+
kernel = random_bivariate_Gaussian(
|
359 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False)
|
360 |
+
elif kernel_type == 'generalized_iso':
|
361 |
+
kernel = random_bivariate_generalized_Gaussian(
|
362 |
+
kernel_size,
|
363 |
+
sigma_x_range,
|
364 |
+
sigma_y_range,
|
365 |
+
rotation_range,
|
366 |
+
betag_range,
|
367 |
+
noise_range=noise_range,
|
368 |
+
isotropic=True)
|
369 |
+
elif kernel_type == 'generalized_aniso':
|
370 |
+
kernel = random_bivariate_generalized_Gaussian(
|
371 |
+
kernel_size,
|
372 |
+
sigma_x_range,
|
373 |
+
sigma_y_range,
|
374 |
+
rotation_range,
|
375 |
+
betag_range,
|
376 |
+
noise_range=noise_range,
|
377 |
+
isotropic=False)
|
378 |
+
elif kernel_type == 'plateau_iso':
|
379 |
+
kernel = random_bivariate_plateau(
|
380 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True)
|
381 |
+
elif kernel_type == 'plateau_aniso':
|
382 |
+
kernel = random_bivariate_plateau(
|
383 |
+
kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False)
|
384 |
+
return kernel
|
385 |
+
|
386 |
+
|
387 |
+
np.seterr(divide='ignore', invalid='ignore')
|
388 |
+
|
389 |
+
|
390 |
+
def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
|
391 |
+
"""2D sinc filter
|
392 |
+
|
393 |
+
Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
|
394 |
+
|
395 |
+
Args:
|
396 |
+
cutoff (float): cutoff frequency in radians (pi is max)
|
397 |
+
kernel_size (int): horizontal and vertical size, must be odd.
|
398 |
+
pad_to (int): pad kernel size to desired size, must be odd or zero.
|
399 |
+
"""
|
400 |
+
assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
|
401 |
+
kernel = np.fromfunction(
|
402 |
+
lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
|
403 |
+
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt(
|
404 |
+
(x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size])
|
405 |
+
kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi)
|
406 |
+
kernel = kernel / np.sum(kernel)
|
407 |
+
if pad_to > kernel_size:
|
408 |
+
pad_size = (pad_to - kernel_size) // 2
|
409 |
+
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
410 |
+
return kernel
|
411 |
+
|
412 |
+
|
413 |
+
# ------------------------------------------------------------- #
|
414 |
+
# --------------------------- noise --------------------------- #
|
415 |
+
# ------------------------------------------------------------- #
|
416 |
+
|
417 |
+
# ----------------------- Gaussian Noise ----------------------- #
|
418 |
+
|
419 |
+
|
420 |
+
def generate_gaussian_noise(img, sigma=10, gray_noise=False):
|
421 |
+
"""Generate Gaussian noise.
|
422 |
+
|
423 |
+
Args:
|
424 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
425 |
+
sigma (float): Noise scale (measured in range 255). Default: 10.
|
426 |
+
|
427 |
+
Returns:
|
428 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
429 |
+
float32.
|
430 |
+
"""
|
431 |
+
if gray_noise:
|
432 |
+
noise = np.float32(np.random.randn(*(img.shape[0:2]))) * sigma / 255.
|
433 |
+
noise = np.expand_dims(noise, axis=2).repeat(3, axis=2)
|
434 |
+
else:
|
435 |
+
noise = np.float32(np.random.randn(*(img.shape))) * sigma / 255.
|
436 |
+
return noise
|
437 |
+
|
438 |
+
|
439 |
+
def add_gaussian_noise(img, sigma=10, clip=True, rounds=False, gray_noise=False):
|
440 |
+
"""Add Gaussian noise.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
444 |
+
sigma (float): Noise scale (measured in range 255). Default: 10.
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
448 |
+
float32.
|
449 |
+
"""
|
450 |
+
noise = generate_gaussian_noise(img, sigma, gray_noise)
|
451 |
+
out = img + noise
|
452 |
+
if clip and rounds:
|
453 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
454 |
+
elif clip:
|
455 |
+
out = np.clip(out, 0, 1)
|
456 |
+
elif rounds:
|
457 |
+
out = (out * 255.0).round() / 255.
|
458 |
+
return out
|
459 |
+
|
460 |
+
|
461 |
+
def generate_gaussian_noise_pt(img, sigma=10, gray_noise=0):
|
462 |
+
"""Add Gaussian noise (PyTorch version).
|
463 |
+
|
464 |
+
Args:
|
465 |
+
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
466 |
+
scale (float | Tensor): Noise scale. Default: 1.0.
|
467 |
+
|
468 |
+
Returns:
|
469 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
470 |
+
float32.
|
471 |
+
"""
|
472 |
+
b, _, h, w = img.size()
|
473 |
+
if not isinstance(sigma, (float, int)):
|
474 |
+
sigma = sigma.view(img.size(0), 1, 1, 1)
|
475 |
+
if isinstance(gray_noise, (float, int)):
|
476 |
+
cal_gray_noise = gray_noise > 0
|
477 |
+
else:
|
478 |
+
gray_noise = gray_noise.view(b, 1, 1, 1)
|
479 |
+
cal_gray_noise = torch.sum(gray_noise) > 0
|
480 |
+
|
481 |
+
if cal_gray_noise:
|
482 |
+
noise_gray = torch.randn(*img.size()[2:4], dtype=img.dtype, device=img.device) * sigma / 255.
|
483 |
+
noise_gray = noise_gray.view(b, 1, h, w)
|
484 |
+
|
485 |
+
# always calculate color noise
|
486 |
+
noise = torch.randn(*img.size(), dtype=img.dtype, device=img.device) * sigma / 255.
|
487 |
+
|
488 |
+
if cal_gray_noise:
|
489 |
+
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
490 |
+
return noise
|
491 |
+
|
492 |
+
|
493 |
+
def add_gaussian_noise_pt(img, sigma=10, gray_noise=0, clip=True, rounds=False):
|
494 |
+
"""Add Gaussian noise (PyTorch version).
|
495 |
+
|
496 |
+
Args:
|
497 |
+
img (Tensor): Shape (b, c, h, w), range[0, 1], float32.
|
498 |
+
scale (float | Tensor): Noise scale. Default: 1.0.
|
499 |
+
|
500 |
+
Returns:
|
501 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
502 |
+
float32.
|
503 |
+
"""
|
504 |
+
noise = generate_gaussian_noise_pt(img, sigma, gray_noise)
|
505 |
+
out = img + noise
|
506 |
+
if clip and rounds:
|
507 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
508 |
+
elif clip:
|
509 |
+
out = torch.clamp(out, 0, 1)
|
510 |
+
elif rounds:
|
511 |
+
out = (out * 255.0).round() / 255.
|
512 |
+
return out
|
513 |
+
|
514 |
+
|
515 |
+
# ----------------------- Random Gaussian Noise ----------------------- #
|
516 |
+
def random_generate_gaussian_noise(img, sigma_range=(0, 10), gray_prob=0):
|
517 |
+
sigma = np.random.uniform(sigma_range[0], sigma_range[1])
|
518 |
+
if np.random.uniform() < gray_prob:
|
519 |
+
gray_noise = True
|
520 |
+
else:
|
521 |
+
gray_noise = False
|
522 |
+
return generate_gaussian_noise(img, sigma, gray_noise)
|
523 |
+
|
524 |
+
|
525 |
+
def random_add_gaussian_noise(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
526 |
+
noise = random_generate_gaussian_noise(img, sigma_range, gray_prob)
|
527 |
+
out = img + noise
|
528 |
+
if clip and rounds:
|
529 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
530 |
+
elif clip:
|
531 |
+
out = np.clip(out, 0, 1)
|
532 |
+
elif rounds:
|
533 |
+
out = (out * 255.0).round() / 255.
|
534 |
+
return out
|
535 |
+
|
536 |
+
|
537 |
+
def random_generate_gaussian_noise_pt(img, sigma_range=(0, 10), gray_prob=0):
|
538 |
+
sigma = torch.rand(
|
539 |
+
img.size(0), dtype=img.dtype, device=img.device) * (sigma_range[1] - sigma_range[0]) + sigma_range[0]
|
540 |
+
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
541 |
+
gray_noise = (gray_noise < gray_prob).float()
|
542 |
+
return generate_gaussian_noise_pt(img, sigma, gray_noise)
|
543 |
+
|
544 |
+
|
545 |
+
def random_add_gaussian_noise_pt(img, sigma_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
546 |
+
noise = random_generate_gaussian_noise_pt(img, sigma_range, gray_prob)
|
547 |
+
out = img + noise
|
548 |
+
if clip and rounds:
|
549 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
550 |
+
elif clip:
|
551 |
+
out = torch.clamp(out, 0, 1)
|
552 |
+
elif rounds:
|
553 |
+
out = (out * 255.0).round() / 255.
|
554 |
+
return out
|
555 |
+
|
556 |
+
|
557 |
+
# ----------------------- Poisson (Shot) Noise ----------------------- #
|
558 |
+
|
559 |
+
|
560 |
+
def generate_poisson_noise(img, scale=1.0, gray_noise=False):
|
561 |
+
"""Generate poisson noise.
|
562 |
+
|
563 |
+
Reference: https://github.com/scikit-image/scikit-image/blob/main/skimage/util/noise.py#L37-L219
|
564 |
+
|
565 |
+
Args:
|
566 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
567 |
+
scale (float): Noise scale. Default: 1.0.
|
568 |
+
gray_noise (bool): Whether generate gray noise. Default: False.
|
569 |
+
|
570 |
+
Returns:
|
571 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
572 |
+
float32.
|
573 |
+
"""
|
574 |
+
if gray_noise:
|
575 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
576 |
+
# round and clip image for counting vals correctly
|
577 |
+
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
578 |
+
vals = len(np.unique(img))
|
579 |
+
vals = 2**np.ceil(np.log2(vals))
|
580 |
+
out = np.float32(np.random.poisson(img * vals) / float(vals))
|
581 |
+
noise = out - img
|
582 |
+
if gray_noise:
|
583 |
+
noise = np.repeat(noise[:, :, np.newaxis], 3, axis=2)
|
584 |
+
return noise * scale
|
585 |
+
|
586 |
+
|
587 |
+
def add_poisson_noise(img, scale=1.0, clip=True, rounds=False, gray_noise=False):
|
588 |
+
"""Add poisson noise.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
592 |
+
scale (float): Noise scale. Default: 1.0.
|
593 |
+
gray_noise (bool): Whether generate gray noise. Default: False.
|
594 |
+
|
595 |
+
Returns:
|
596 |
+
(Numpy array): Returned noisy image, shape (h, w, c), range[0, 1],
|
597 |
+
float32.
|
598 |
+
"""
|
599 |
+
noise = generate_poisson_noise(img, scale, gray_noise)
|
600 |
+
out = img + noise
|
601 |
+
if clip and rounds:
|
602 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
603 |
+
elif clip:
|
604 |
+
out = np.clip(out, 0, 1)
|
605 |
+
elif rounds:
|
606 |
+
out = (out * 255.0).round() / 255.
|
607 |
+
return out
|
608 |
+
|
609 |
+
|
610 |
+
def generate_poisson_noise_pt(img, scale=1.0, gray_noise=0):
|
611 |
+
"""Generate a batch of poisson noise (PyTorch version)
|
612 |
+
|
613 |
+
Args:
|
614 |
+
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
615 |
+
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
616 |
+
Default: 1.0.
|
617 |
+
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
618 |
+
0 for False, 1 for True. Default: 0.
|
619 |
+
|
620 |
+
Returns:
|
621 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
622 |
+
float32.
|
623 |
+
"""
|
624 |
+
b, _, h, w = img.size()
|
625 |
+
if isinstance(gray_noise, (float, int)):
|
626 |
+
cal_gray_noise = gray_noise > 0
|
627 |
+
else:
|
628 |
+
gray_noise = gray_noise.view(b, 1, 1, 1)
|
629 |
+
cal_gray_noise = torch.sum(gray_noise) > 0
|
630 |
+
if cal_gray_noise:
|
631 |
+
img_gray = rgb_to_grayscale(img, num_output_channels=1)
|
632 |
+
# round and clip image for counting vals correctly
|
633 |
+
img_gray = torch.clamp((img_gray * 255.0).round(), 0, 255) / 255.
|
634 |
+
# use for-loop to get the unique values for each sample
|
635 |
+
vals_list = [len(torch.unique(img_gray[i, :, :, :])) for i in range(b)]
|
636 |
+
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
637 |
+
vals = img_gray.new_tensor(vals_list).view(b, 1, 1, 1)
|
638 |
+
out = torch.poisson(img_gray * vals) / vals
|
639 |
+
noise_gray = out - img_gray
|
640 |
+
noise_gray = noise_gray.expand(b, 3, h, w)
|
641 |
+
|
642 |
+
# always calculate color noise
|
643 |
+
# round and clip image for counting vals correctly
|
644 |
+
img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
|
645 |
+
# use for-loop to get the unique values for each sample
|
646 |
+
vals_list = [len(torch.unique(img[i, :, :, :])) for i in range(b)]
|
647 |
+
vals_list = [2**np.ceil(np.log2(vals)) for vals in vals_list]
|
648 |
+
vals = img.new_tensor(vals_list).view(b, 1, 1, 1)
|
649 |
+
out = torch.poisson(img * vals) / vals
|
650 |
+
noise = out - img
|
651 |
+
if cal_gray_noise:
|
652 |
+
noise = noise * (1 - gray_noise) + noise_gray * gray_noise
|
653 |
+
if not isinstance(scale, (float, int)):
|
654 |
+
scale = scale.view(b, 1, 1, 1)
|
655 |
+
return noise * scale
|
656 |
+
|
657 |
+
|
658 |
+
def add_poisson_noise_pt(img, scale=1.0, clip=True, rounds=False, gray_noise=0):
|
659 |
+
"""Add poisson noise to a batch of images (PyTorch version).
|
660 |
+
|
661 |
+
Args:
|
662 |
+
img (Tensor): Input image, shape (b, c, h, w), range [0, 1], float32.
|
663 |
+
scale (float | Tensor): Noise scale. Number or Tensor with shape (b).
|
664 |
+
Default: 1.0.
|
665 |
+
gray_noise (float | Tensor): 0-1 number or Tensor with shape (b).
|
666 |
+
0 for False, 1 for True. Default: 0.
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
(Tensor): Returned noisy image, shape (b, c, h, w), range[0, 1],
|
670 |
+
float32.
|
671 |
+
"""
|
672 |
+
noise = generate_poisson_noise_pt(img, scale, gray_noise)
|
673 |
+
out = img + noise
|
674 |
+
if clip and rounds:
|
675 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
676 |
+
elif clip:
|
677 |
+
out = torch.clamp(out, 0, 1)
|
678 |
+
elif rounds:
|
679 |
+
out = (out * 255.0).round() / 255.
|
680 |
+
return out
|
681 |
+
|
682 |
+
|
683 |
+
# ----------------------- Random Poisson (Shot) Noise ----------------------- #
|
684 |
+
|
685 |
+
|
686 |
+
def random_generate_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0):
|
687 |
+
scale = np.random.uniform(scale_range[0], scale_range[1])
|
688 |
+
if np.random.uniform() < gray_prob:
|
689 |
+
gray_noise = True
|
690 |
+
else:
|
691 |
+
gray_noise = False
|
692 |
+
return generate_poisson_noise(img, scale, gray_noise)
|
693 |
+
|
694 |
+
|
695 |
+
def random_add_poisson_noise(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
696 |
+
noise = random_generate_poisson_noise(img, scale_range, gray_prob)
|
697 |
+
out = img + noise
|
698 |
+
if clip and rounds:
|
699 |
+
out = np.clip((out * 255.0).round(), 0, 255) / 255.
|
700 |
+
elif clip:
|
701 |
+
out = np.clip(out, 0, 1)
|
702 |
+
elif rounds:
|
703 |
+
out = (out * 255.0).round() / 255.
|
704 |
+
return out
|
705 |
+
|
706 |
+
|
707 |
+
def random_generate_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0):
|
708 |
+
scale = torch.rand(
|
709 |
+
img.size(0), dtype=img.dtype, device=img.device) * (scale_range[1] - scale_range[0]) + scale_range[0]
|
710 |
+
gray_noise = torch.rand(img.size(0), dtype=img.dtype, device=img.device)
|
711 |
+
gray_noise = (gray_noise < gray_prob).float()
|
712 |
+
return generate_poisson_noise_pt(img, scale, gray_noise)
|
713 |
+
|
714 |
+
|
715 |
+
def random_add_poisson_noise_pt(img, scale_range=(0, 1.0), gray_prob=0, clip=True, rounds=False):
|
716 |
+
noise = random_generate_poisson_noise_pt(img, scale_range, gray_prob)
|
717 |
+
out = img + noise
|
718 |
+
if clip and rounds:
|
719 |
+
out = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
720 |
+
elif clip:
|
721 |
+
out = torch.clamp(out, 0, 1)
|
722 |
+
elif rounds:
|
723 |
+
out = (out * 255.0).round() / 255.
|
724 |
+
return out
|
725 |
+
|
726 |
+
|
727 |
+
# ------------------------------------------------------------------------ #
|
728 |
+
# --------------------------- JPEG compression --------------------------- #
|
729 |
+
# ------------------------------------------------------------------------ #
|
730 |
+
|
731 |
+
|
732 |
+
def add_jpg_compression(img, quality=90):
|
733 |
+
"""Add JPG compression artifacts.
|
734 |
+
|
735 |
+
Args:
|
736 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
737 |
+
quality (float): JPG compression quality. 0 for lowest quality, 100 for
|
738 |
+
best quality. Default: 90.
|
739 |
+
|
740 |
+
Returns:
|
741 |
+
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
742 |
+
float32.
|
743 |
+
"""
|
744 |
+
img = np.clip(img, 0, 1)
|
745 |
+
encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), int(quality)]
|
746 |
+
_, encimg = cv2.imencode('.jpg', img * 255., encode_param)
|
747 |
+
img = np.float32(cv2.imdecode(encimg, 1)) / 255.
|
748 |
+
return img
|
749 |
+
|
750 |
+
|
751 |
+
def random_add_jpg_compression(img, quality_range=(90, 100)):
|
752 |
+
"""Randomly add JPG compression artifacts.
|
753 |
+
|
754 |
+
Args:
|
755 |
+
img (Numpy array): Input image, shape (h, w, c), range [0, 1], float32.
|
756 |
+
quality_range (tuple[float] | list[float]): JPG compression quality
|
757 |
+
range. 0 for lowest quality, 100 for best quality.
|
758 |
+
Default: (90, 100).
|
759 |
+
|
760 |
+
Returns:
|
761 |
+
(Numpy array): Returned image after JPG, shape (h, w, c), range[0, 1],
|
762 |
+
float32.
|
763 |
+
"""
|
764 |
+
quality = np.random.uniform(quality_range[0], quality_range[1])
|
765 |
+
return add_jpg_compression(img, quality)
|
basicsr/data/ffhq_dataset.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import time
|
3 |
+
from os import path as osp
|
4 |
+
from torch.utils import data as data
|
5 |
+
from torchvision.transforms.functional import normalize
|
6 |
+
|
7 |
+
from basicsr.data.transforms import augment
|
8 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
9 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
10 |
+
|
11 |
+
|
12 |
+
@DATASET_REGISTRY.register()
|
13 |
+
class FFHQDataset(data.Dataset):
|
14 |
+
"""FFHQ dataset for StyleGAN.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
18 |
+
dataroot_gt (str): Data root path for gt.
|
19 |
+
io_backend (dict): IO backend type and other kwarg.
|
20 |
+
mean (list | tuple): Image mean.
|
21 |
+
std (list | tuple): Image std.
|
22 |
+
use_hflip (bool): Whether to horizontally flip.
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, opt):
|
27 |
+
super(FFHQDataset, self).__init__()
|
28 |
+
self.opt = opt
|
29 |
+
# file client (io backend)
|
30 |
+
self.file_client = None
|
31 |
+
self.io_backend_opt = opt['io_backend']
|
32 |
+
|
33 |
+
self.gt_folder = opt['dataroot_gt']
|
34 |
+
self.mean = opt['mean']
|
35 |
+
self.std = opt['std']
|
36 |
+
|
37 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
38 |
+
self.io_backend_opt['db_paths'] = self.gt_folder
|
39 |
+
if not self.gt_folder.endswith('.lmdb'):
|
40 |
+
raise ValueError("'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}")
|
41 |
+
with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin:
|
42 |
+
self.paths = [line.split('.')[0] for line in fin]
|
43 |
+
else:
|
44 |
+
# FFHQ has 70000 images in total
|
45 |
+
self.paths = [osp.join(self.gt_folder, f'{v:08d}.png') for v in range(70000)]
|
46 |
+
|
47 |
+
def __getitem__(self, index):
|
48 |
+
if self.file_client is None:
|
49 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
50 |
+
|
51 |
+
# load gt image
|
52 |
+
gt_path = self.paths[index]
|
53 |
+
# avoid errors caused by high latency in reading files
|
54 |
+
retry = 3
|
55 |
+
while retry > 0:
|
56 |
+
try:
|
57 |
+
img_bytes = self.file_client.get(gt_path)
|
58 |
+
except Exception as e:
|
59 |
+
logger = get_root_logger()
|
60 |
+
logger.warning(f'File client error: {e}, remaining retry times: {retry - 1}')
|
61 |
+
# change another file to read
|
62 |
+
index = random.randint(0, self.__len__())
|
63 |
+
gt_path = self.paths[index]
|
64 |
+
time.sleep(1) # sleep 1s for occasional server congestion
|
65 |
+
else:
|
66 |
+
break
|
67 |
+
finally:
|
68 |
+
retry -= 1
|
69 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
70 |
+
|
71 |
+
# random horizontal flip
|
72 |
+
img_gt = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False)
|
73 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
74 |
+
img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True)
|
75 |
+
# normalize
|
76 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
77 |
+
return {'gt': img_gt, 'gt_path': gt_path}
|
78 |
+
|
79 |
+
def __len__(self):
|
80 |
+
return len(self.paths)
|
basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
basicsr/data/meta_info/meta_info_REDS4_test_GT.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
000 100 (720,1280,3)
|
2 |
+
011 100 (720,1280,3)
|
3 |
+
015 100 (720,1280,3)
|
4 |
+
020 100 (720,1280,3)
|
basicsr/data/meta_info/meta_info_REDS_GT.txt
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
000 100 (720,1280,3)
|
2 |
+
001 100 (720,1280,3)
|
3 |
+
002 100 (720,1280,3)
|
4 |
+
003 100 (720,1280,3)
|
5 |
+
004 100 (720,1280,3)
|
6 |
+
005 100 (720,1280,3)
|
7 |
+
006 100 (720,1280,3)
|
8 |
+
007 100 (720,1280,3)
|
9 |
+
008 100 (720,1280,3)
|
10 |
+
009 100 (720,1280,3)
|
11 |
+
010 100 (720,1280,3)
|
12 |
+
011 100 (720,1280,3)
|
13 |
+
012 100 (720,1280,3)
|
14 |
+
013 100 (720,1280,3)
|
15 |
+
014 100 (720,1280,3)
|
16 |
+
015 100 (720,1280,3)
|
17 |
+
016 100 (720,1280,3)
|
18 |
+
017 100 (720,1280,3)
|
19 |
+
018 100 (720,1280,3)
|
20 |
+
019 100 (720,1280,3)
|
21 |
+
020 100 (720,1280,3)
|
22 |
+
021 100 (720,1280,3)
|
23 |
+
022 100 (720,1280,3)
|
24 |
+
023 100 (720,1280,3)
|
25 |
+
024 100 (720,1280,3)
|
26 |
+
025 100 (720,1280,3)
|
27 |
+
026 100 (720,1280,3)
|
28 |
+
027 100 (720,1280,3)
|
29 |
+
028 100 (720,1280,3)
|
30 |
+
029 100 (720,1280,3)
|
31 |
+
030 100 (720,1280,3)
|
32 |
+
031 100 (720,1280,3)
|
33 |
+
032 100 (720,1280,3)
|
34 |
+
033 100 (720,1280,3)
|
35 |
+
034 100 (720,1280,3)
|
36 |
+
035 100 (720,1280,3)
|
37 |
+
036 100 (720,1280,3)
|
38 |
+
037 100 (720,1280,3)
|
39 |
+
038 100 (720,1280,3)
|
40 |
+
039 100 (720,1280,3)
|
41 |
+
040 100 (720,1280,3)
|
42 |
+
041 100 (720,1280,3)
|
43 |
+
042 100 (720,1280,3)
|
44 |
+
043 100 (720,1280,3)
|
45 |
+
044 100 (720,1280,3)
|
46 |
+
045 100 (720,1280,3)
|
47 |
+
046 100 (720,1280,3)
|
48 |
+
047 100 (720,1280,3)
|
49 |
+
048 100 (720,1280,3)
|
50 |
+
049 100 (720,1280,3)
|
51 |
+
050 100 (720,1280,3)
|
52 |
+
051 100 (720,1280,3)
|
53 |
+
052 100 (720,1280,3)
|
54 |
+
053 100 (720,1280,3)
|
55 |
+
054 100 (720,1280,3)
|
56 |
+
055 100 (720,1280,3)
|
57 |
+
056 100 (720,1280,3)
|
58 |
+
057 100 (720,1280,3)
|
59 |
+
058 100 (720,1280,3)
|
60 |
+
059 100 (720,1280,3)
|
61 |
+
060 100 (720,1280,3)
|
62 |
+
061 100 (720,1280,3)
|
63 |
+
062 100 (720,1280,3)
|
64 |
+
063 100 (720,1280,3)
|
65 |
+
064 100 (720,1280,3)
|
66 |
+
065 100 (720,1280,3)
|
67 |
+
066 100 (720,1280,3)
|
68 |
+
067 100 (720,1280,3)
|
69 |
+
068 100 (720,1280,3)
|
70 |
+
069 100 (720,1280,3)
|
71 |
+
070 100 (720,1280,3)
|
72 |
+
071 100 (720,1280,3)
|
73 |
+
072 100 (720,1280,3)
|
74 |
+
073 100 (720,1280,3)
|
75 |
+
074 100 (720,1280,3)
|
76 |
+
075 100 (720,1280,3)
|
77 |
+
076 100 (720,1280,3)
|
78 |
+
077 100 (720,1280,3)
|
79 |
+
078 100 (720,1280,3)
|
80 |
+
079 100 (720,1280,3)
|
81 |
+
080 100 (720,1280,3)
|
82 |
+
081 100 (720,1280,3)
|
83 |
+
082 100 (720,1280,3)
|
84 |
+
083 100 (720,1280,3)
|
85 |
+
084 100 (720,1280,3)
|
86 |
+
085 100 (720,1280,3)
|
87 |
+
086 100 (720,1280,3)
|
88 |
+
087 100 (720,1280,3)
|
89 |
+
088 100 (720,1280,3)
|
90 |
+
089 100 (720,1280,3)
|
91 |
+
090 100 (720,1280,3)
|
92 |
+
091 100 (720,1280,3)
|
93 |
+
092 100 (720,1280,3)
|
94 |
+
093 100 (720,1280,3)
|
95 |
+
094 100 (720,1280,3)
|
96 |
+
095 100 (720,1280,3)
|
97 |
+
096 100 (720,1280,3)
|
98 |
+
097 100 (720,1280,3)
|
99 |
+
098 100 (720,1280,3)
|
100 |
+
099 100 (720,1280,3)
|
101 |
+
100 100 (720,1280,3)
|
102 |
+
101 100 (720,1280,3)
|
103 |
+
102 100 (720,1280,3)
|
104 |
+
103 100 (720,1280,3)
|
105 |
+
104 100 (720,1280,3)
|
106 |
+
105 100 (720,1280,3)
|
107 |
+
106 100 (720,1280,3)
|
108 |
+
107 100 (720,1280,3)
|
109 |
+
108 100 (720,1280,3)
|
110 |
+
109 100 (720,1280,3)
|
111 |
+
110 100 (720,1280,3)
|
112 |
+
111 100 (720,1280,3)
|
113 |
+
112 100 (720,1280,3)
|
114 |
+
113 100 (720,1280,3)
|
115 |
+
114 100 (720,1280,3)
|
116 |
+
115 100 (720,1280,3)
|
117 |
+
116 100 (720,1280,3)
|
118 |
+
117 100 (720,1280,3)
|
119 |
+
118 100 (720,1280,3)
|
120 |
+
119 100 (720,1280,3)
|
121 |
+
120 100 (720,1280,3)
|
122 |
+
121 100 (720,1280,3)
|
123 |
+
122 100 (720,1280,3)
|
124 |
+
123 100 (720,1280,3)
|
125 |
+
124 100 (720,1280,3)
|
126 |
+
125 100 (720,1280,3)
|
127 |
+
126 100 (720,1280,3)
|
128 |
+
127 100 (720,1280,3)
|
129 |
+
128 100 (720,1280,3)
|
130 |
+
129 100 (720,1280,3)
|
131 |
+
130 100 (720,1280,3)
|
132 |
+
131 100 (720,1280,3)
|
133 |
+
132 100 (720,1280,3)
|
134 |
+
133 100 (720,1280,3)
|
135 |
+
134 100 (720,1280,3)
|
136 |
+
135 100 (720,1280,3)
|
137 |
+
136 100 (720,1280,3)
|
138 |
+
137 100 (720,1280,3)
|
139 |
+
138 100 (720,1280,3)
|
140 |
+
139 100 (720,1280,3)
|
141 |
+
140 100 (720,1280,3)
|
142 |
+
141 100 (720,1280,3)
|
143 |
+
142 100 (720,1280,3)
|
144 |
+
143 100 (720,1280,3)
|
145 |
+
144 100 (720,1280,3)
|
146 |
+
145 100 (720,1280,3)
|
147 |
+
146 100 (720,1280,3)
|
148 |
+
147 100 (720,1280,3)
|
149 |
+
148 100 (720,1280,3)
|
150 |
+
149 100 (720,1280,3)
|
151 |
+
150 100 (720,1280,3)
|
152 |
+
151 100 (720,1280,3)
|
153 |
+
152 100 (720,1280,3)
|
154 |
+
153 100 (720,1280,3)
|
155 |
+
154 100 (720,1280,3)
|
156 |
+
155 100 (720,1280,3)
|
157 |
+
156 100 (720,1280,3)
|
158 |
+
157 100 (720,1280,3)
|
159 |
+
158 100 (720,1280,3)
|
160 |
+
159 100 (720,1280,3)
|
161 |
+
160 100 (720,1280,3)
|
162 |
+
161 100 (720,1280,3)
|
163 |
+
162 100 (720,1280,3)
|
164 |
+
163 100 (720,1280,3)
|
165 |
+
164 100 (720,1280,3)
|
166 |
+
165 100 (720,1280,3)
|
167 |
+
166 100 (720,1280,3)
|
168 |
+
167 100 (720,1280,3)
|
169 |
+
168 100 (720,1280,3)
|
170 |
+
169 100 (720,1280,3)
|
171 |
+
170 100 (720,1280,3)
|
172 |
+
171 100 (720,1280,3)
|
173 |
+
172 100 (720,1280,3)
|
174 |
+
173 100 (720,1280,3)
|
175 |
+
174 100 (720,1280,3)
|
176 |
+
175 100 (720,1280,3)
|
177 |
+
176 100 (720,1280,3)
|
178 |
+
177 100 (720,1280,3)
|
179 |
+
178 100 (720,1280,3)
|
180 |
+
179 100 (720,1280,3)
|
181 |
+
180 100 (720,1280,3)
|
182 |
+
181 100 (720,1280,3)
|
183 |
+
182 100 (720,1280,3)
|
184 |
+
183 100 (720,1280,3)
|
185 |
+
184 100 (720,1280,3)
|
186 |
+
185 100 (720,1280,3)
|
187 |
+
186 100 (720,1280,3)
|
188 |
+
187 100 (720,1280,3)
|
189 |
+
188 100 (720,1280,3)
|
190 |
+
189 100 (720,1280,3)
|
191 |
+
190 100 (720,1280,3)
|
192 |
+
191 100 (720,1280,3)
|
193 |
+
192 100 (720,1280,3)
|
194 |
+
193 100 (720,1280,3)
|
195 |
+
194 100 (720,1280,3)
|
196 |
+
195 100 (720,1280,3)
|
197 |
+
196 100 (720,1280,3)
|
198 |
+
197 100 (720,1280,3)
|
199 |
+
198 100 (720,1280,3)
|
200 |
+
199 100 (720,1280,3)
|
201 |
+
200 100 (720,1280,3)
|
202 |
+
201 100 (720,1280,3)
|
203 |
+
202 100 (720,1280,3)
|
204 |
+
203 100 (720,1280,3)
|
205 |
+
204 100 (720,1280,3)
|
206 |
+
205 100 (720,1280,3)
|
207 |
+
206 100 (720,1280,3)
|
208 |
+
207 100 (720,1280,3)
|
209 |
+
208 100 (720,1280,3)
|
210 |
+
209 100 (720,1280,3)
|
211 |
+
210 100 (720,1280,3)
|
212 |
+
211 100 (720,1280,3)
|
213 |
+
212 100 (720,1280,3)
|
214 |
+
213 100 (720,1280,3)
|
215 |
+
214 100 (720,1280,3)
|
216 |
+
215 100 (720,1280,3)
|
217 |
+
216 100 (720,1280,3)
|
218 |
+
217 100 (720,1280,3)
|
219 |
+
218 100 (720,1280,3)
|
220 |
+
219 100 (720,1280,3)
|
221 |
+
220 100 (720,1280,3)
|
222 |
+
221 100 (720,1280,3)
|
223 |
+
222 100 (720,1280,3)
|
224 |
+
223 100 (720,1280,3)
|
225 |
+
224 100 (720,1280,3)
|
226 |
+
225 100 (720,1280,3)
|
227 |
+
226 100 (720,1280,3)
|
228 |
+
227 100 (720,1280,3)
|
229 |
+
228 100 (720,1280,3)
|
230 |
+
229 100 (720,1280,3)
|
231 |
+
230 100 (720,1280,3)
|
232 |
+
231 100 (720,1280,3)
|
233 |
+
232 100 (720,1280,3)
|
234 |
+
233 100 (720,1280,3)
|
235 |
+
234 100 (720,1280,3)
|
236 |
+
235 100 (720,1280,3)
|
237 |
+
236 100 (720,1280,3)
|
238 |
+
237 100 (720,1280,3)
|
239 |
+
238 100 (720,1280,3)
|
240 |
+
239 100 (720,1280,3)
|
241 |
+
240 100 (720,1280,3)
|
242 |
+
241 100 (720,1280,3)
|
243 |
+
242 100 (720,1280,3)
|
244 |
+
243 100 (720,1280,3)
|
245 |
+
244 100 (720,1280,3)
|
246 |
+
245 100 (720,1280,3)
|
247 |
+
246 100 (720,1280,3)
|
248 |
+
247 100 (720,1280,3)
|
249 |
+
248 100 (720,1280,3)
|
250 |
+
249 100 (720,1280,3)
|
251 |
+
250 100 (720,1280,3)
|
252 |
+
251 100 (720,1280,3)
|
253 |
+
252 100 (720,1280,3)
|
254 |
+
253 100 (720,1280,3)
|
255 |
+
254 100 (720,1280,3)
|
256 |
+
255 100 (720,1280,3)
|
257 |
+
256 100 (720,1280,3)
|
258 |
+
257 100 (720,1280,3)
|
259 |
+
258 100 (720,1280,3)
|
260 |
+
259 100 (720,1280,3)
|
261 |
+
260 100 (720,1280,3)
|
262 |
+
261 100 (720,1280,3)
|
263 |
+
262 100 (720,1280,3)
|
264 |
+
263 100 (720,1280,3)
|
265 |
+
264 100 (720,1280,3)
|
266 |
+
265 100 (720,1280,3)
|
267 |
+
266 100 (720,1280,3)
|
268 |
+
267 100 (720,1280,3)
|
269 |
+
268 100 (720,1280,3)
|
270 |
+
269 100 (720,1280,3)
|
basicsr/data/meta_info/meta_info_REDSofficial4_test_GT.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
240 100 (720,1280,3)
|
2 |
+
241 100 (720,1280,3)
|
3 |
+
246 100 (720,1280,3)
|
4 |
+
257 100 (720,1280,3)
|
basicsr/data/meta_info/meta_info_REDSval_official_test_GT.txt
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
240 100 (720,1280,3)
|
2 |
+
241 100 (720,1280,3)
|
3 |
+
242 100 (720,1280,3)
|
4 |
+
243 100 (720,1280,3)
|
5 |
+
244 100 (720,1280,3)
|
6 |
+
245 100 (720,1280,3)
|
7 |
+
246 100 (720,1280,3)
|
8 |
+
247 100 (720,1280,3)
|
9 |
+
248 100 (720,1280,3)
|
10 |
+
249 100 (720,1280,3)
|
11 |
+
250 100 (720,1280,3)
|
12 |
+
251 100 (720,1280,3)
|
13 |
+
252 100 (720,1280,3)
|
14 |
+
253 100 (720,1280,3)
|
15 |
+
254 100 (720,1280,3)
|
16 |
+
255 100 (720,1280,3)
|
17 |
+
256 100 (720,1280,3)
|
18 |
+
257 100 (720,1280,3)
|
19 |
+
258 100 (720,1280,3)
|
20 |
+
259 100 (720,1280,3)
|
21 |
+
260 100 (720,1280,3)
|
22 |
+
261 100 (720,1280,3)
|
23 |
+
262 100 (720,1280,3)
|
24 |
+
263 100 (720,1280,3)
|
25 |
+
264 100 (720,1280,3)
|
26 |
+
265 100 (720,1280,3)
|
27 |
+
266 100 (720,1280,3)
|
28 |
+
267 100 (720,1280,3)
|
29 |
+
268 100 (720,1280,3)
|
30 |
+
269 100 (720,1280,3)
|
basicsr/data/meta_info/meta_info_Vimeo90K_test_GT.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
basicsr/data/meta_info/meta_info_Vimeo90K_test_fast_GT.txt
ADDED
@@ -0,0 +1,1225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
00001/0625 7 (256,448,3)
|
2 |
+
00001/0632 7 (256,448,3)
|
3 |
+
00001/0807 7 (256,448,3)
|
4 |
+
00001/0832 7 (256,448,3)
|
5 |
+
00001/0834 7 (256,448,3)
|
6 |
+
00001/0836 7 (256,448,3)
|
7 |
+
00002/0004 7 (256,448,3)
|
8 |
+
00002/0112 7 (256,448,3)
|
9 |
+
00002/0116 7 (256,448,3)
|
10 |
+
00002/0123 7 (256,448,3)
|
11 |
+
00002/0455 7 (256,448,3)
|
12 |
+
00002/0602 7 (256,448,3)
|
13 |
+
00002/0976 7 (256,448,3)
|
14 |
+
00002/0980 7 (256,448,3)
|
15 |
+
00002/0983 7 (256,448,3)
|
16 |
+
00002/1000 7 (256,448,3)
|
17 |
+
00003/0022 7 (256,448,3)
|
18 |
+
00003/0031 7 (256,448,3)
|
19 |
+
00003/0035 7 (256,448,3)
|
20 |
+
00003/0041 7 (256,448,3)
|
21 |
+
00003/0073 7 (256,448,3)
|
22 |
+
00003/0107 7 (256,448,3)
|
23 |
+
00003/0111 7 (256,448,3)
|
24 |
+
00003/0114 7 (256,448,3)
|
25 |
+
00003/0117 7 (256,448,3)
|
26 |
+
00003/0121 7 (256,448,3)
|
27 |
+
00003/0499 7 (256,448,3)
|
28 |
+
00003/0501 7 (256,448,3)
|
29 |
+
00003/0507 7 (256,448,3)
|
30 |
+
00003/0510 7 (256,448,3)
|
31 |
+
00003/0517 7 (256,448,3)
|
32 |
+
00003/0522 7 (256,448,3)
|
33 |
+
00003/0531 7 (256,448,3)
|
34 |
+
00003/0533 7 (256,448,3)
|
35 |
+
00003/0534 7 (256,448,3)
|
36 |
+
00003/0682 7 (256,448,3)
|
37 |
+
00003/0687 7 (256,448,3)
|
38 |
+
00003/0715 7 (256,448,3)
|
39 |
+
00003/0742 7 (256,448,3)
|
40 |
+
00003/0751 7 (256,448,3)
|
41 |
+
00003/0984 7 (256,448,3)
|
42 |
+
00004/0042 7 (256,448,3)
|
43 |
+
00004/0165 7 (256,448,3)
|
44 |
+
00004/0321 7 (256,448,3)
|
45 |
+
00004/0569 7 (256,448,3)
|
46 |
+
00004/0572 7 (256,448,3)
|
47 |
+
00004/0619 7 (256,448,3)
|
48 |
+
00004/0776 7 (256,448,3)
|
49 |
+
00004/0780 7 (256,448,3)
|
50 |
+
00004/0825 7 (256,448,3)
|
51 |
+
00004/0832 7 (256,448,3)
|
52 |
+
00004/0853 7 (256,448,3)
|
53 |
+
00004/0876 7 (256,448,3)
|
54 |
+
00004/0888 7 (256,448,3)
|
55 |
+
00005/0015 7 (256,448,3)
|
56 |
+
00005/0021 7 (256,448,3)
|
57 |
+
00005/0022 7 (256,448,3)
|
58 |
+
00005/0024 7 (256,448,3)
|
59 |
+
00005/0026 7 (256,448,3)
|
60 |
+
00005/0394 7 (256,448,3)
|
61 |
+
00005/0403 7 (256,448,3)
|
62 |
+
00005/0531 7 (256,448,3)
|
63 |
+
00005/0546 7 (256,448,3)
|
64 |
+
00005/0554 7 (256,448,3)
|
65 |
+
00005/0694 7 (256,448,3)
|
66 |
+
00005/0700 7 (256,448,3)
|
67 |
+
00005/0740 7 (256,448,3)
|
68 |
+
00005/0826 7 (256,448,3)
|
69 |
+
00005/0832 7 (256,448,3)
|
70 |
+
00005/0834 7 (256,448,3)
|
71 |
+
00005/0943 7 (256,448,3)
|
72 |
+
00006/0184 7 (256,448,3)
|
73 |
+
00006/0205 7 (256,448,3)
|
74 |
+
00006/0206 7 (256,448,3)
|
75 |
+
00006/0211 7 (256,448,3)
|
76 |
+
00006/0271 7 (256,448,3)
|
77 |
+
00006/0273 7 (256,448,3)
|
78 |
+
00006/0277 7 (256,448,3)
|
79 |
+
00006/0283 7 (256,448,3)
|
80 |
+
00006/0287 7 (256,448,3)
|
81 |
+
00006/0298 7 (256,448,3)
|
82 |
+
00006/0310 7 (256,448,3)
|
83 |
+
00006/0356 7 (256,448,3)
|
84 |
+
00006/0357 7 (256,448,3)
|
85 |
+
00006/0544 7 (256,448,3)
|
86 |
+
00006/0565 7 (256,448,3)
|
87 |
+
00006/0569 7 (256,448,3)
|
88 |
+
00006/0573 7 (256,448,3)
|
89 |
+
00006/0592 7 (256,448,3)
|
90 |
+
00006/0613 7 (256,448,3)
|
91 |
+
00006/0633 7 (256,448,3)
|
92 |
+
00006/0637 7 (256,448,3)
|
93 |
+
00006/0646 7 (256,448,3)
|
94 |
+
00006/0649 7 (256,448,3)
|
95 |
+
00006/0655 7 (256,448,3)
|
96 |
+
00006/0658 7 (256,448,3)
|
97 |
+
00006/0662 7 (256,448,3)
|
98 |
+
00006/0666 7 (256,448,3)
|
99 |
+
00006/0673 7 (256,448,3)
|
100 |
+
00007/0248 7 (256,448,3)
|
101 |
+
00007/0253 7 (256,448,3)
|
102 |
+
00007/0430 7 (256,448,3)
|
103 |
+
00007/0434 7 (256,448,3)
|
104 |
+
00007/0436 7 (256,448,3)
|
105 |
+
00007/0452 7 (256,448,3)
|
106 |
+
00007/0464 7 (256,448,3)
|
107 |
+
00007/0470 7 (256,448,3)
|
108 |
+
00007/0472 7 (256,448,3)
|
109 |
+
00007/0483 7 (256,448,3)
|
110 |
+
00007/0484 7 (256,448,3)
|
111 |
+
00007/0493 7 (256,448,3)
|
112 |
+
00007/0508 7 (256,448,3)
|
113 |
+
00007/0514 7 (256,448,3)
|
114 |
+
00007/0697 7 (256,448,3)
|
115 |
+
00007/0698 7 (256,448,3)
|
116 |
+
00007/0744 7 (256,448,3)
|
117 |
+
00007/0775 7 (256,448,3)
|
118 |
+
00007/0786 7 (256,448,3)
|
119 |
+
00007/0790 7 (256,448,3)
|
120 |
+
00007/0800 7 (256,448,3)
|
121 |
+
00007/0833 7 (256,448,3)
|
122 |
+
00007/0867 7 (256,448,3)
|
123 |
+
00007/0879 7 (256,448,3)
|
124 |
+
00007/0899 7 (256,448,3)
|
125 |
+
00008/0251 7 (256,448,3)
|
126 |
+
00008/0322 7 (256,448,3)
|
127 |
+
00008/0971 7 (256,448,3)
|
128 |
+
00008/0976 7 (256,448,3)
|
129 |
+
00009/0016 7 (256,448,3)
|
130 |
+
00009/0036 7 (256,448,3)
|
131 |
+
00009/0037 7 (256,448,3)
|
132 |
+
00009/0609 7 (256,448,3)
|
133 |
+
00009/0812 7 (256,448,3)
|
134 |
+
00009/0821 7 (256,448,3)
|
135 |
+
00009/0947 7 (256,448,3)
|
136 |
+
00009/0952 7 (256,448,3)
|
137 |
+
00009/0955 7 (256,448,3)
|
138 |
+
00009/0970 7 (256,448,3)
|
139 |
+
00010/0072 7 (256,448,3)
|
140 |
+
00010/0074 7 (256,448,3)
|
141 |
+
00010/0079 7 (256,448,3)
|
142 |
+
00010/0085 7 (256,448,3)
|
143 |
+
00010/0139 7 (256,448,3)
|
144 |
+
00010/0140 7 (256,448,3)
|
145 |
+
00010/0183 7 (256,448,3)
|
146 |
+
00010/0200 7 (256,448,3)
|
147 |
+
00010/0223 7 (256,448,3)
|
148 |
+
00010/0305 7 (256,448,3)
|
149 |
+
00010/0323 7 (256,448,3)
|
150 |
+
00010/0338 7 (256,448,3)
|
151 |
+
00010/0342 7 (256,448,3)
|
152 |
+
00010/0350 7 (256,448,3)
|
153 |
+
00010/0356 7 (256,448,3)
|
154 |
+
00010/0362 7 (256,448,3)
|
155 |
+
00010/0366 7 (256,448,3)
|
156 |
+
00010/0375 7 (256,448,3)
|
157 |
+
00010/0404 7 (256,448,3)
|
158 |
+
00010/0407 7 (256,448,3)
|
159 |
+
00010/0414 7 (256,448,3)
|
160 |
+
00010/0418 7 (256,448,3)
|
161 |
+
00010/0429 7 (256,448,3)
|
162 |
+
00010/0557 7 (256,448,3)
|
163 |
+
00010/0564 7 (256,448,3)
|
164 |
+
00010/0733 7 (256,448,3)
|
165 |
+
00010/0935 7 (256,448,3)
|
166 |
+
00010/0939 7 (256,448,3)
|
167 |
+
00010/0943 7 (256,448,3)
|
168 |
+
00011/0242 7 (256,448,3)
|
169 |
+
00011/0259 7 (256,448,3)
|
170 |
+
00011/0263 7 (256,448,3)
|
171 |
+
00011/0266 7 (256,448,3)
|
172 |
+
00011/0278 7 (256,448,3)
|
173 |
+
00011/0890 7 (256,448,3)
|
174 |
+
00011/0894 7 (256,448,3)
|
175 |
+
00011/0903 7 (256,448,3)
|
176 |
+
00011/0906 7 (256,448,3)
|
177 |
+
00011/0913 7 (256,448,3)
|
178 |
+
00012/0011 7 (256,448,3)
|
179 |
+
00012/0014 7 (256,448,3)
|
180 |
+
00012/0126 7 (256,448,3)
|
181 |
+
00012/0127 7 (256,448,3)
|
182 |
+
00012/0526 7 (256,448,3)
|
183 |
+
00012/0551 7 (256,448,3)
|
184 |
+
00012/0896 7 (256,448,3)
|
185 |
+
00012/0910 7 (256,448,3)
|
186 |
+
00012/0915 7 (256,448,3)
|
187 |
+
00013/0167 7 (256,448,3)
|
188 |
+
00013/0794 7 (256,448,3)
|
189 |
+
00013/0807 7 (256,448,3)
|
190 |
+
00013/0846 7 (256,448,3)
|
191 |
+
00013/0882 7 (256,448,3)
|
192 |
+
00013/0889 7 (256,448,3)
|
193 |
+
00013/0910 7 (256,448,3)
|
194 |
+
00013/0913 7 (256,448,3)
|
195 |
+
00013/0924 7 (256,448,3)
|
196 |
+
00013/0931 7 (256,448,3)
|
197 |
+
00013/0944 7 (256,448,3)
|
198 |
+
00013/0955 7 (256,448,3)
|
199 |
+
00013/0962 7 (256,448,3)
|
200 |
+
00013/0969 7 (256,448,3)
|
201 |
+
00014/0012 7 (256,448,3)
|
202 |
+
00014/0025 7 (256,448,3)
|
203 |
+
00014/0473 7 (256,448,3)
|
204 |
+
00014/0499 7 (256,448,3)
|
205 |
+
00014/0524 7 (256,448,3)
|
206 |
+
00014/0739 7 (256,448,3)
|
207 |
+
00014/0753 7 (256,448,3)
|
208 |
+
00014/0771 7 (256,448,3)
|
209 |
+
00014/0832 7 (256,448,3)
|
210 |
+
00014/0836 7 (256,448,3)
|
211 |
+
00014/0838 7 (256,448,3)
|
212 |
+
00014/0839 7 (256,448,3)
|
213 |
+
00014/0843 7 (256,448,3)
|
214 |
+
00014/0846 7 (256,448,3)
|
215 |
+
00014/0849 7 (256,448,3)
|
216 |
+
00014/0859 7 (256,448,3)
|
217 |
+
00014/0880 7 (256,448,3)
|
218 |
+
00014/0906 7 (256,448,3)
|
219 |
+
00015/0030 7 (256,448,3)
|
220 |
+
00015/0067 7 (256,448,3)
|
221 |
+
00015/0084 7 (256,448,3)
|
222 |
+
00015/0190 7 (256,448,3)
|
223 |
+
00015/0575 7 (256,448,3)
|
224 |
+
00015/0784 7 (256,448,3)
|
225 |
+
00015/0855 7 (256,448,3)
|
226 |
+
00015/0904 7 (256,448,3)
|
227 |
+
00015/0914 7 (256,448,3)
|
228 |
+
00015/0936 7 (256,448,3)
|
229 |
+
00015/0939 7 (256,448,3)
|
230 |
+
00015/0943 7 (256,448,3)
|
231 |
+
00015/0957 7 (256,448,3)
|
232 |
+
00016/0131 7 (256,448,3)
|
233 |
+
00016/0173 7 (256,448,3)
|
234 |
+
00016/0320 7 (256,448,3)
|
235 |
+
00016/0328 7 (256,448,3)
|
236 |
+
00016/0334 7 (256,448,3)
|
237 |
+
00016/0338 7 (256,448,3)
|
238 |
+
00016/0339 7 (256,448,3)
|
239 |
+
00016/0345 7 (256,448,3)
|
240 |
+
00016/0365 7 (256,448,3)
|
241 |
+
00016/0584 7 (256,448,3)
|
242 |
+
00016/0634 7 (256,448,3)
|
243 |
+
00017/0342 7 (256,448,3)
|
244 |
+
00017/0346 7 (256,448,3)
|
245 |
+
00017/0350 7 (256,448,3)
|
246 |
+
00017/0766 7 (256,448,3)
|
247 |
+
00017/0786 7 (256,448,3)
|
248 |
+
00017/0911 7 (256,448,3)
|
249 |
+
00017/0914 7 (256,448,3)
|
250 |
+
00018/0217 7 (256,448,3)
|
251 |
+
00018/0258 7 (256,448,3)
|
252 |
+
00018/0307 7 (256,448,3)
|
253 |
+
00018/0480 7 (256,448,3)
|
254 |
+
00018/0491 7 (256,448,3)
|
255 |
+
00018/0994 7 (256,448,3)
|
256 |
+
00018/0995 7 (256,448,3)
|
257 |
+
00018/0997 7 (256,448,3)
|
258 |
+
00018/1000 7 (256,448,3)
|
259 |
+
00019/0007 7 (256,448,3)
|
260 |
+
00019/0016 7 (256,448,3)
|
261 |
+
00019/0026 7 (256,448,3)
|
262 |
+
00019/0030 7 (256,448,3)
|
263 |
+
00019/0086 7 (256,448,3)
|
264 |
+
00019/0089 7 (256,448,3)
|
265 |
+
00019/0111 7 (256,448,3)
|
266 |
+
00019/0285 7 (256,448,3)
|
267 |
+
00019/0415 7 (256,448,3)
|
268 |
+
00019/0434 7 (256,448,3)
|
269 |
+
00019/0437 7 (256,448,3)
|
270 |
+
00019/0568 7 (256,448,3)
|
271 |
+
00019/0570 7 (256,448,3)
|
272 |
+
00019/0591 7 (256,448,3)
|
273 |
+
00019/0596 7 (256,448,3)
|
274 |
+
00019/0603 7 (256,448,3)
|
275 |
+
00019/0607 7 (256,448,3)
|
276 |
+
00019/0637 7 (256,448,3)
|
277 |
+
00019/0644 7 (256,448,3)
|
278 |
+
00019/0647 7 (256,448,3)
|
279 |
+
00019/0787 7 (256,448,3)
|
280 |
+
00019/0993 7 (256,448,3)
|
281 |
+
00019/0998 7 (256,448,3)
|
282 |
+
00021/0232 7 (256,448,3)
|
283 |
+
00021/0255 7 (256,448,3)
|
284 |
+
00021/0646 7 (256,448,3)
|
285 |
+
00021/0653 7 (256,448,3)
|
286 |
+
00021/0657 7 (256,448,3)
|
287 |
+
00021/0668 7 (256,448,3)
|
288 |
+
00021/0672 7 (256,448,3)
|
289 |
+
00021/0725 7 (256,448,3)
|
290 |
+
00021/0750 7 (256,448,3)
|
291 |
+
00021/0764 7 (256,448,3)
|
292 |
+
00021/0821 7 (256,448,3)
|
293 |
+
00022/0192 7 (256,448,3)
|
294 |
+
00022/0391 7 (256,448,3)
|
295 |
+
00022/0514 7 (256,448,3)
|
296 |
+
00022/0567 7 (256,448,3)
|
297 |
+
00022/0674 7 (256,448,3)
|
298 |
+
00022/0686 7 (256,448,3)
|
299 |
+
00022/0700 7 (256,448,3)
|
300 |
+
00023/0020 7 (256,448,3)
|
301 |
+
00023/0024 7 (256,448,3)
|
302 |
+
00023/0025 7 (256,448,3)
|
303 |
+
00023/0042 7 (256,448,3)
|
304 |
+
00023/0050 7 (256,448,3)
|
305 |
+
00023/0094 7 (256,448,3)
|
306 |
+
00023/0107 7 (256,448,3)
|
307 |
+
00023/0635 7 (256,448,3)
|
308 |
+
00023/0698 7 (256,448,3)
|
309 |
+
00023/0774 7 (256,448,3)
|
310 |
+
00023/0795 7 (256,448,3)
|
311 |
+
00023/0821 7 (256,448,3)
|
312 |
+
00023/0839 7 (256,448,3)
|
313 |
+
00023/0846 7 (256,448,3)
|
314 |
+
00023/0869 7 (256,448,3)
|
315 |
+
00023/0879 7 (256,448,3)
|
316 |
+
00023/0887 7 (256,448,3)
|
317 |
+
00023/0899 7 (256,448,3)
|
318 |
+
00023/0910 7 (256,448,3)
|
319 |
+
00023/0920 7 (256,448,3)
|
320 |
+
00023/0929 7 (256,448,3)
|
321 |
+
00023/0941 7 (256,448,3)
|
322 |
+
00023/0942 7 (256,448,3)
|
323 |
+
00023/0952 7 (256,448,3)
|
324 |
+
00024/0066 7 (256,448,3)
|
325 |
+
00024/0072 7 (256,448,3)
|
326 |
+
00024/0080 7 (256,448,3)
|
327 |
+
00024/0093 7 (256,448,3)
|
328 |
+
00024/0107 7 (256,448,3)
|
329 |
+
00024/0262 7 (256,448,3)
|
330 |
+
00024/0283 7 (256,448,3)
|
331 |
+
00024/0294 7 (256,448,3)
|
332 |
+
00024/0296 7 (256,448,3)
|
333 |
+
00024/0304 7 (256,448,3)
|
334 |
+
00024/0315 7 (256,448,3)
|
335 |
+
00024/0322 7 (256,448,3)
|
336 |
+
00024/0648 7 (256,448,3)
|
337 |
+
00024/0738 7 (256,448,3)
|
338 |
+
00024/0743 7 (256,448,3)
|
339 |
+
00025/0542 7 (256,448,3)
|
340 |
+
00025/0769 7 (256,448,3)
|
341 |
+
00025/0984 7 (256,448,3)
|
342 |
+
00025/0985 7 (256,448,3)
|
343 |
+
00025/0989 7 (256,448,3)
|
344 |
+
00025/0991 7 (256,448,3)
|
345 |
+
00026/0009 7 (256,448,3)
|
346 |
+
00026/0013 7 (256,448,3)
|
347 |
+
00026/0020 7 (256,448,3)
|
348 |
+
00026/0021 7 (256,448,3)
|
349 |
+
00026/0025 7 (256,448,3)
|
350 |
+
00026/0135 7 (256,448,3)
|
351 |
+
00026/0200 7 (256,448,3)
|
352 |
+
00026/0297 7 (256,448,3)
|
353 |
+
00026/0306 7 (256,448,3)
|
354 |
+
00026/0444 7 (256,448,3)
|
355 |
+
00026/0450 7 (256,448,3)
|
356 |
+
00026/0453 7 (256,448,3)
|
357 |
+
00026/0464 7 (256,448,3)
|
358 |
+
00026/0486 7 (256,448,3)
|
359 |
+
00026/0773 7 (256,448,3)
|
360 |
+
00026/0785 7 (256,448,3)
|
361 |
+
00026/0836 7 (256,448,3)
|
362 |
+
00026/0838 7 (256,448,3)
|
363 |
+
00026/0848 7 (256,448,3)
|
364 |
+
00026/0885 7 (256,448,3)
|
365 |
+
00026/0893 7 (256,448,3)
|
366 |
+
00026/0939 7 (256,448,3)
|
367 |
+
00026/0942 7 (256,448,3)
|
368 |
+
00027/0092 7 (256,448,3)
|
369 |
+
00027/0112 7 (256,448,3)
|
370 |
+
00027/0115 7 (256,448,3)
|
371 |
+
00027/0143 7 (256,448,3)
|
372 |
+
00027/0175 7 (256,448,3)
|
373 |
+
00027/0179 7 (256,448,3)
|
374 |
+
00027/0183 7 (256,448,3)
|
375 |
+
00027/0197 7 (256,448,3)
|
376 |
+
00027/0199 7 (256,448,3)
|
377 |
+
00027/0300 7 (256,448,3)
|
378 |
+
00028/0015 7 (256,448,3)
|
379 |
+
00028/0032 7 (256,448,3)
|
380 |
+
00028/0048 7 (256,448,3)
|
381 |
+
00028/0068 7 (256,448,3)
|
382 |
+
00028/0219 7 (256,448,3)
|
383 |
+
00028/0606 7 (256,448,3)
|
384 |
+
00028/0626 7 (256,448,3)
|
385 |
+
00028/0748 7 (256,448,3)
|
386 |
+
00028/0764 7 (256,448,3)
|
387 |
+
00028/0772 7 (256,448,3)
|
388 |
+
00028/0780 7 (256,448,3)
|
389 |
+
00028/0926 7 (256,448,3)
|
390 |
+
00028/0947 7 (256,448,3)
|
391 |
+
00028/0962 7 (256,448,3)
|
392 |
+
00029/0085 7 (256,448,3)
|
393 |
+
00029/0281 7 (256,448,3)
|
394 |
+
00029/0284 7 (256,448,3)
|
395 |
+
00029/0288 7 (256,448,3)
|
396 |
+
00029/0294 7 (256,448,3)
|
397 |
+
00029/0364 7 (256,448,3)
|
398 |
+
00029/0369 7 (256,448,3)
|
399 |
+
00029/0421 7 (256,448,3)
|
400 |
+
00029/0425 7 (256,448,3)
|
401 |
+
00029/0550 7 (256,448,3)
|
402 |
+
00030/0014 7 (256,448,3)
|
403 |
+
00030/0101 7 (256,448,3)
|
404 |
+
00030/0143 7 (256,448,3)
|
405 |
+
00030/0351 7 (256,448,3)
|
406 |
+
00030/0356 7 (256,448,3)
|
407 |
+
00030/0371 7 (256,448,3)
|
408 |
+
00030/0484 7 (256,448,3)
|
409 |
+
00030/0492 7 (256,448,3)
|
410 |
+
00030/0503 7 (256,448,3)
|
411 |
+
00030/0682 7 (256,448,3)
|
412 |
+
00030/0696 7 (256,448,3)
|
413 |
+
00030/0735 7 (256,448,3)
|
414 |
+
00030/0737 7 (256,448,3)
|
415 |
+
00030/0868 7 (256,448,3)
|
416 |
+
00031/0161 7 (256,448,3)
|
417 |
+
00031/0180 7 (256,448,3)
|
418 |
+
00031/0194 7 (256,448,3)
|
419 |
+
00031/0253 7 (256,448,3)
|
420 |
+
00031/0293 7 (256,448,3)
|
421 |
+
00031/0466 7 (256,448,3)
|
422 |
+
00031/0477 7 (256,448,3)
|
423 |
+
00031/0549 7 (256,448,3)
|
424 |
+
00031/0600 7 (256,448,3)
|
425 |
+
00031/0617 7 (256,448,3)
|
426 |
+
00031/0649 7 (256,448,3)
|
427 |
+
00032/0015 7 (256,448,3)
|
428 |
+
00032/0020 7 (256,448,3)
|
429 |
+
00032/0023 7 (256,448,3)
|
430 |
+
00032/0048 7 (256,448,3)
|
431 |
+
00032/0056 7 (256,448,3)
|
432 |
+
00032/0872 7 (256,448,3)
|
433 |
+
00033/0069 7 (256,448,3)
|
434 |
+
00033/0073 7 (256,448,3)
|
435 |
+
00033/0078 7 (256,448,3)
|
436 |
+
00033/0079 7 (256,448,3)
|
437 |
+
00033/0086 7 (256,448,3)
|
438 |
+
00033/0088 7 (256,448,3)
|
439 |
+
00033/0091 7 (256,448,3)
|
440 |
+
00033/0096 7 (256,448,3)
|
441 |
+
00033/0607 7 (256,448,3)
|
442 |
+
00033/0613 7 (256,448,3)
|
443 |
+
00033/0616 7 (256,448,3)
|
444 |
+
00033/0619 7 (256,448,3)
|
445 |
+
00033/0626 7 (256,448,3)
|
446 |
+
00033/0628 7 (256,448,3)
|
447 |
+
00033/0637 7 (256,448,3)
|
448 |
+
00033/0686 7 (256,448,3)
|
449 |
+
00033/0842 7 (256,448,3)
|
450 |
+
00034/0261 7 (256,448,3)
|
451 |
+
00034/0265 7 (256,448,3)
|
452 |
+
00034/0269 7 (256,448,3)
|
453 |
+
00034/0275 7 (256,448,3)
|
454 |
+
00034/0286 7 (256,448,3)
|
455 |
+
00034/0294 7 (256,448,3)
|
456 |
+
00034/0431 7 (256,448,3)
|
457 |
+
00034/0577 7 (256,448,3)
|
458 |
+
00034/0685 7 (256,448,3)
|
459 |
+
00034/0687 7 (256,448,3)
|
460 |
+
00034/0703 7 (256,448,3)
|
461 |
+
00034/0715 7 (256,448,3)
|
462 |
+
00034/0935 7 (256,448,3)
|
463 |
+
00034/0943 7 (256,448,3)
|
464 |
+
00034/0963 7 (256,448,3)
|
465 |
+
00034/0979 7 (256,448,3)
|
466 |
+
00034/0990 7 (256,448,3)
|
467 |
+
00035/0129 7 (256,448,3)
|
468 |
+
00035/0153 7 (256,448,3)
|
469 |
+
00035/0156 7 (256,448,3)
|
470 |
+
00035/0474 7 (256,448,3)
|
471 |
+
00035/0507 7 (256,448,3)
|
472 |
+
00035/0532 7 (256,448,3)
|
473 |
+
00035/0560 7 (256,448,3)
|
474 |
+
00035/0572 7 (256,448,3)
|
475 |
+
00035/0587 7 (256,448,3)
|
476 |
+
00035/0588 7 (256,448,3)
|
477 |
+
00035/0640 7 (256,448,3)
|
478 |
+
00035/0654 7 (256,448,3)
|
479 |
+
00035/0655 7 (256,448,3)
|
480 |
+
00035/0737 7 (256,448,3)
|
481 |
+
00035/0843 7 (256,448,3)
|
482 |
+
00035/0932 7 (256,448,3)
|
483 |
+
00035/0957 7 (256,448,3)
|
484 |
+
00036/0029 7 (256,448,3)
|
485 |
+
00036/0266 7 (256,448,3)
|
486 |
+
00036/0276 7 (256,448,3)
|
487 |
+
00036/0310 7 (256,448,3)
|
488 |
+
00036/0314 7 (256,448,3)
|
489 |
+
00036/0320 7 (256,448,3)
|
490 |
+
00036/0333 7 (256,448,3)
|
491 |
+
00036/0348 7 (256,448,3)
|
492 |
+
00036/0357 7 (256,448,3)
|
493 |
+
00036/0360 7 (256,448,3)
|
494 |
+
00036/0368 7 (256,448,3)
|
495 |
+
00036/0371 7 (256,448,3)
|
496 |
+
00036/0378 7 (256,448,3)
|
497 |
+
00036/0391 7 (256,448,3)
|
498 |
+
00036/0440 7 (256,448,3)
|
499 |
+
00036/0731 7 (256,448,3)
|
500 |
+
00036/0733 7 (256,448,3)
|
501 |
+
00036/0741 7 (256,448,3)
|
502 |
+
00036/0743 7 (256,448,3)
|
503 |
+
00036/0927 7 (256,448,3)
|
504 |
+
00036/0931 7 (256,448,3)
|
505 |
+
00036/0933 7 (256,448,3)
|
506 |
+
00036/0938 7 (256,448,3)
|
507 |
+
00036/0944 7 (256,448,3)
|
508 |
+
00036/0946 7 (256,448,3)
|
509 |
+
00036/0951 7 (256,448,3)
|
510 |
+
00036/0953 7 (256,448,3)
|
511 |
+
00036/0963 7 (256,448,3)
|
512 |
+
00036/0964 7 (256,448,3)
|
513 |
+
00036/0981 7 (256,448,3)
|
514 |
+
00036/0991 7 (256,448,3)
|
515 |
+
00037/0072 7 (256,448,3)
|
516 |
+
00037/0079 7 (256,448,3)
|
517 |
+
00037/0132 7 (256,448,3)
|
518 |
+
00037/0135 7 (256,448,3)
|
519 |
+
00037/0137 7 (256,448,3)
|
520 |
+
00037/0141 7 (256,448,3)
|
521 |
+
00037/0229 7 (256,448,3)
|
522 |
+
00037/0234 7 (256,448,3)
|
523 |
+
00037/0239 7 (256,448,3)
|
524 |
+
00037/0242 7 (256,448,3)
|
525 |
+
00037/0254 7 (256,448,3)
|
526 |
+
00037/0269 7 (256,448,3)
|
527 |
+
00037/0276 7 (256,448,3)
|
528 |
+
00037/0279 7 (256,448,3)
|
529 |
+
00037/0286 7 (256,448,3)
|
530 |
+
00037/0345 7 (256,448,3)
|
531 |
+
00037/0449 7 (256,448,3)
|
532 |
+
00037/0450 7 (256,448,3)
|
533 |
+
00037/0820 7 (256,448,3)
|
534 |
+
00037/0824 7 (256,448,3)
|
535 |
+
00037/0859 7 (256,448,3)
|
536 |
+
00037/0899 7 (256,448,3)
|
537 |
+
00037/0906 7 (256,448,3)
|
538 |
+
00038/0535 7 (256,448,3)
|
539 |
+
00038/0572 7 (256,448,3)
|
540 |
+
00038/0675 7 (256,448,3)
|
541 |
+
00038/0731 7 (256,448,3)
|
542 |
+
00038/0732 7 (256,448,3)
|
543 |
+
00038/0744 7 (256,448,3)
|
544 |
+
00038/0755 7 (256,448,3)
|
545 |
+
00039/0002 7 (256,448,3)
|
546 |
+
00039/0013 7 (256,448,3)
|
547 |
+
00039/0247 7 (256,448,3)
|
548 |
+
00039/0489 7 (256,448,3)
|
549 |
+
00039/0504 7 (256,448,3)
|
550 |
+
00039/0558 7 (256,448,3)
|
551 |
+
00039/0686 7 (256,448,3)
|
552 |
+
00039/0727 7 (256,448,3)
|
553 |
+
00039/0769 7 (256,448,3)
|
554 |
+
00040/0081 7 (256,448,3)
|
555 |
+
00040/0082 7 (256,448,3)
|
556 |
+
00040/0402 7 (256,448,3)
|
557 |
+
00040/0407 7 (256,448,3)
|
558 |
+
00040/0408 7 (256,448,3)
|
559 |
+
00040/0410 7 (256,448,3)
|
560 |
+
00040/0411 7 (256,448,3)
|
561 |
+
00040/0412 7 (256,448,3)
|
562 |
+
00040/0413 7 (256,448,3)
|
563 |
+
00040/0415 7 (256,448,3)
|
564 |
+
00040/0421 7 (256,448,3)
|
565 |
+
00040/0422 7 (256,448,3)
|
566 |
+
00040/0426 7 (256,448,3)
|
567 |
+
00040/0438 7 (256,448,3)
|
568 |
+
00040/0439 7 (256,448,3)
|
569 |
+
00040/0440 7 (256,448,3)
|
570 |
+
00040/0443 7 (256,448,3)
|
571 |
+
00040/0457 7 (256,448,3)
|
572 |
+
00040/0459 7 (256,448,3)
|
573 |
+
00040/0725 7 (256,448,3)
|
574 |
+
00040/0727 7 (256,448,3)
|
575 |
+
00040/0936 7 (256,448,3)
|
576 |
+
00040/0959 7 (256,448,3)
|
577 |
+
00040/0964 7 (256,448,3)
|
578 |
+
00040/0968 7 (256,448,3)
|
579 |
+
00040/0974 7 (256,448,3)
|
580 |
+
00040/0978 7 (256,448,3)
|
581 |
+
00040/0979 7 (256,448,3)
|
582 |
+
00040/0989 7 (256,448,3)
|
583 |
+
00040/0993 7 (256,448,3)
|
584 |
+
00040/0994 7 (256,448,3)
|
585 |
+
00040/0997 7 (256,448,3)
|
586 |
+
00041/0001 7 (256,448,3)
|
587 |
+
00041/0007 7 (256,448,3)
|
588 |
+
00041/0019 7 (256,448,3)
|
589 |
+
00041/0040 7 (256,448,3)
|
590 |
+
00041/0350 7 (256,448,3)
|
591 |
+
00041/0357 7 (256,448,3)
|
592 |
+
00041/0393 7 (256,448,3)
|
593 |
+
00041/0890 7 (256,448,3)
|
594 |
+
00041/0909 7 (256,448,3)
|
595 |
+
00041/0915 7 (256,448,3)
|
596 |
+
00041/0933 7 (256,448,3)
|
597 |
+
00042/0017 7 (256,448,3)
|
598 |
+
00042/0332 7 (256,448,3)
|
599 |
+
00042/0346 7 (256,448,3)
|
600 |
+
00042/0350 7 (256,448,3)
|
601 |
+
00042/0356 7 (256,448,3)
|
602 |
+
00042/0382 7 (256,448,3)
|
603 |
+
00042/0389 7 (256,448,3)
|
604 |
+
00042/0539 7 (256,448,3)
|
605 |
+
00042/0546 7 (256,448,3)
|
606 |
+
00042/0550 7 (256,448,3)
|
607 |
+
00042/0553 7 (256,448,3)
|
608 |
+
00042/0555 7 (256,448,3)
|
609 |
+
00042/0560 7 (256,448,3)
|
610 |
+
00042/0570 7 (256,448,3)
|
611 |
+
00043/0119 7 (256,448,3)
|
612 |
+
00043/0122 7 (256,448,3)
|
613 |
+
00043/0168 7 (256,448,3)
|
614 |
+
00043/0274 7 (256,448,3)
|
615 |
+
00043/0304 7 (256,448,3)
|
616 |
+
00043/0731 7 (256,448,3)
|
617 |
+
00043/0735 7 (256,448,3)
|
618 |
+
00043/0739 7 (256,448,3)
|
619 |
+
00043/0740 7 (256,448,3)
|
620 |
+
00044/0212 7 (256,448,3)
|
621 |
+
00044/0432 7 (256,448,3)
|
622 |
+
00044/0934 7 (256,448,3)
|
623 |
+
00044/0940 7 (256,448,3)
|
624 |
+
00044/0987 7 (256,448,3)
|
625 |
+
00045/0004 7 (256,448,3)
|
626 |
+
00045/0009 7 (256,448,3)
|
627 |
+
00045/0011 7 (256,448,3)
|
628 |
+
00045/0019 7 (256,448,3)
|
629 |
+
00045/0023 7 (256,448,3)
|
630 |
+
00045/0289 7 (256,448,3)
|
631 |
+
00045/0760 7 (256,448,3)
|
632 |
+
00045/0779 7 (256,448,3)
|
633 |
+
00045/0816 7 (256,448,3)
|
634 |
+
00045/0820 7 (256,448,3)
|
635 |
+
00046/0132 7 (256,448,3)
|
636 |
+
00046/0350 7 (256,448,3)
|
637 |
+
00046/0356 7 (256,448,3)
|
638 |
+
00046/0357 7 (256,448,3)
|
639 |
+
00046/0379 7 (256,448,3)
|
640 |
+
00046/0410 7 (256,448,3)
|
641 |
+
00046/0412 7 (256,448,3)
|
642 |
+
00046/0481 7 (256,448,3)
|
643 |
+
00046/0497 7 (256,448,3)
|
644 |
+
00046/0510 7 (256,448,3)
|
645 |
+
00046/0515 7 (256,448,3)
|
646 |
+
00046/0529 7 (256,448,3)
|
647 |
+
00046/0544 7 (256,448,3)
|
648 |
+
00046/0545 7 (256,448,3)
|
649 |
+
00046/0552 7 (256,448,3)
|
650 |
+
00046/0559 7 (256,448,3)
|
651 |
+
00046/0589 7 (256,448,3)
|
652 |
+
00046/0642 7 (256,448,3)
|
653 |
+
00046/0724 7 (256,448,3)
|
654 |
+
00046/0758 7 (256,448,3)
|
655 |
+
00046/0930 7 (256,448,3)
|
656 |
+
00046/0953 7 (256,448,3)
|
657 |
+
00047/0013 7 (256,448,3)
|
658 |
+
00047/0014 7 (256,448,3)
|
659 |
+
00047/0017 7 (256,448,3)
|
660 |
+
00047/0076 7 (256,448,3)
|
661 |
+
00047/0151 7 (256,448,3)
|
662 |
+
00047/0797 7 (256,448,3)
|
663 |
+
00048/0014 7 (256,448,3)
|
664 |
+
00048/0021 7 (256,448,3)
|
665 |
+
00048/0026 7 (256,448,3)
|
666 |
+
00048/0030 7 (256,448,3)
|
667 |
+
00048/0039 7 (256,448,3)
|
668 |
+
00048/0045 7 (256,448,3)
|
669 |
+
00048/0049 7 (256,448,3)
|
670 |
+
00048/0145 7 (256,448,3)
|
671 |
+
00048/0188 7 (256,448,3)
|
672 |
+
00048/0302 7 (256,448,3)
|
673 |
+
00048/0361 7 (256,448,3)
|
674 |
+
00048/0664 7 (256,448,3)
|
675 |
+
00048/0672 7 (256,448,3)
|
676 |
+
00048/0681 7 (256,448,3)
|
677 |
+
00048/0689 7 (256,448,3)
|
678 |
+
00048/0690 7 (256,448,3)
|
679 |
+
00048/0691 7 (256,448,3)
|
680 |
+
00048/0711 7 (256,448,3)
|
681 |
+
00049/0085 7 (256,448,3)
|
682 |
+
00049/0810 7 (256,448,3)
|
683 |
+
00049/0858 7 (256,448,3)
|
684 |
+
00049/0865 7 (256,448,3)
|
685 |
+
00049/0871 7 (256,448,3)
|
686 |
+
00049/0903 7 (256,448,3)
|
687 |
+
00049/0928 7 (256,448,3)
|
688 |
+
00050/0092 7 (256,448,3)
|
689 |
+
00050/0101 7 (256,448,3)
|
690 |
+
00050/0108 7 (256,448,3)
|
691 |
+
00050/0112 7 (256,448,3)
|
692 |
+
00050/0120 7 (256,448,3)
|
693 |
+
00050/0128 7 (256,448,3)
|
694 |
+
00050/0383 7 (256,448,3)
|
695 |
+
00050/0395 7 (256,448,3)
|
696 |
+
00050/0405 7 (256,448,3)
|
697 |
+
00050/0632 7 (256,448,3)
|
698 |
+
00050/0648 7 (256,448,3)
|
699 |
+
00050/0649 7 (256,448,3)
|
700 |
+
00050/0659 7 (256,448,3)
|
701 |
+
00050/0699 7 (256,448,3)
|
702 |
+
00050/0708 7 (256,448,3)
|
703 |
+
00050/0716 7 (256,448,3)
|
704 |
+
00050/0758 7 (256,448,3)
|
705 |
+
00050/0761 7 (256,448,3)
|
706 |
+
00051/0572 7 (256,448,3)
|
707 |
+
00052/0163 7 (256,448,3)
|
708 |
+
00052/0242 7 (256,448,3)
|
709 |
+
00052/0260 7 (256,448,3)
|
710 |
+
00052/0322 7 (256,448,3)
|
711 |
+
00052/0333 7 (256,448,3)
|
712 |
+
00052/0806 7 (256,448,3)
|
713 |
+
00052/0813 7 (256,448,3)
|
714 |
+
00052/0821 7 (256,448,3)
|
715 |
+
00052/0830 7 (256,448,3)
|
716 |
+
00052/0914 7 (256,448,3)
|
717 |
+
00052/0923 7 (256,448,3)
|
718 |
+
00052/0959 7 (256,448,3)
|
719 |
+
00053/0288 7 (256,448,3)
|
720 |
+
00053/0290 7 (256,448,3)
|
721 |
+
00053/0323 7 (256,448,3)
|
722 |
+
00053/0337 7 (256,448,3)
|
723 |
+
00053/0340 7 (256,448,3)
|
724 |
+
00053/0437 7 (256,448,3)
|
725 |
+
00053/0595 7 (256,448,3)
|
726 |
+
00053/0739 7 (256,448,3)
|
727 |
+
00053/0761 7 (256,448,3)
|
728 |
+
00054/0014 7 (256,448,3)
|
729 |
+
00054/0017 7 (256,448,3)
|
730 |
+
00054/0178 7 (256,448,3)
|
731 |
+
00054/0183 7 (256,448,3)
|
732 |
+
00054/0196 7 (256,448,3)
|
733 |
+
00054/0205 7 (256,448,3)
|
734 |
+
00054/0214 7 (256,448,3)
|
735 |
+
00054/0289 7 (256,448,3)
|
736 |
+
00054/0453 7 (256,448,3)
|
737 |
+
00054/0498 7 (256,448,3)
|
738 |
+
00054/0502 7 (256,448,3)
|
739 |
+
00054/0514 7 (256,448,3)
|
740 |
+
00054/0773 7 (256,448,3)
|
741 |
+
00055/0001 7 (256,448,3)
|
742 |
+
00055/0115 7 (256,448,3)
|
743 |
+
00055/0118 7 (256,448,3)
|
744 |
+
00055/0171 7 (256,448,3)
|
745 |
+
00055/0214 7 (256,448,3)
|
746 |
+
00055/0354 7 (256,448,3)
|
747 |
+
00055/0449 7 (256,448,3)
|
748 |
+
00055/0473 7 (256,448,3)
|
749 |
+
00055/0649 7 (256,448,3)
|
750 |
+
00055/0800 7 (256,448,3)
|
751 |
+
00055/0803 7 (256,448,3)
|
752 |
+
00055/0990 7 (256,448,3)
|
753 |
+
00056/0041 7 (256,448,3)
|
754 |
+
00056/0120 7 (256,448,3)
|
755 |
+
00056/0293 7 (256,448,3)
|
756 |
+
00056/0357 7 (256,448,3)
|
757 |
+
00056/0506 7 (256,448,3)
|
758 |
+
00056/0561 7 (256,448,3)
|
759 |
+
00056/0567 7 (256,448,3)
|
760 |
+
00056/0575 7 (256,448,3)
|
761 |
+
00057/0175 7 (256,448,3)
|
762 |
+
00057/0495 7 (256,448,3)
|
763 |
+
00057/0498 7 (256,448,3)
|
764 |
+
00057/0506 7 (256,448,3)
|
765 |
+
00057/0612 7 (256,448,3)
|
766 |
+
00057/0620 7 (256,448,3)
|
767 |
+
00057/0623 7 (256,448,3)
|
768 |
+
00057/0635 7 (256,448,3)
|
769 |
+
00057/0773 7 (256,448,3)
|
770 |
+
00057/0778 7 (256,448,3)
|
771 |
+
00057/0867 7 (256,448,3)
|
772 |
+
00057/0976 7 (256,448,3)
|
773 |
+
00057/0980 7 (256,448,3)
|
774 |
+
00057/0985 7 (256,448,3)
|
775 |
+
00057/0992 7 (256,448,3)
|
776 |
+
00058/0009 7 (256,448,3)
|
777 |
+
00058/0076 7 (256,448,3)
|
778 |
+
00058/0078 7 (256,448,3)
|
779 |
+
00058/0279 7 (256,448,3)
|
780 |
+
00058/0283 7 (256,448,3)
|
781 |
+
00058/0286 7 (256,448,3)
|
782 |
+
00058/0350 7 (256,448,3)
|
783 |
+
00058/0380 7 (256,448,3)
|
784 |
+
00061/0132 7 (256,448,3)
|
785 |
+
00061/0141 7 (256,448,3)
|
786 |
+
00061/0156 7 (256,448,3)
|
787 |
+
00061/0159 7 (256,448,3)
|
788 |
+
00061/0168 7 (256,448,3)
|
789 |
+
00061/0170 7 (256,448,3)
|
790 |
+
00061/0186 7 (256,448,3)
|
791 |
+
00061/0219 7 (256,448,3)
|
792 |
+
00061/0227 7 (256,448,3)
|
793 |
+
00061/0238 7 (256,448,3)
|
794 |
+
00061/0256 7 (256,448,3)
|
795 |
+
00061/0303 7 (256,448,3)
|
796 |
+
00061/0312 7 (256,448,3)
|
797 |
+
00061/0313 7 (256,448,3)
|
798 |
+
00061/0325 7 (256,448,3)
|
799 |
+
00061/0367 7 (256,448,3)
|
800 |
+
00061/0369 7 (256,448,3)
|
801 |
+
00061/0387 7 (256,448,3)
|
802 |
+
00061/0396 7 (256,448,3)
|
803 |
+
00061/0486 7 (256,448,3)
|
804 |
+
00061/0895 7 (256,448,3)
|
805 |
+
00061/0897 7 (256,448,3)
|
806 |
+
00062/0846 7 (256,448,3)
|
807 |
+
00063/0156 7 (256,448,3)
|
808 |
+
00063/0184 7 (256,448,3)
|
809 |
+
00063/0191 7 (256,448,3)
|
810 |
+
00063/0334 7 (256,448,3)
|
811 |
+
00063/0350 7 (256,448,3)
|
812 |
+
00063/0499 7 (256,448,3)
|
813 |
+
00063/0878 7 (256,448,3)
|
814 |
+
00064/0004 7 (256,448,3)
|
815 |
+
00064/0264 7 (256,448,3)
|
816 |
+
00064/0735 7 (256,448,3)
|
817 |
+
00064/0738 7 (256,448,3)
|
818 |
+
00065/0105 7 (256,448,3)
|
819 |
+
00065/0169 7 (256,448,3)
|
820 |
+
00065/0305 7 (256,448,3)
|
821 |
+
00065/0324 7 (256,448,3)
|
822 |
+
00065/0353 7 (256,448,3)
|
823 |
+
00065/0520 7 (256,448,3)
|
824 |
+
00065/0533 7 (256,448,3)
|
825 |
+
00065/0545 7 (256,448,3)
|
826 |
+
00065/0551 7 (256,448,3)
|
827 |
+
00065/0568 7 (256,448,3)
|
828 |
+
00065/0603 7 (256,448,3)
|
829 |
+
00065/0884 7 (256,448,3)
|
830 |
+
00065/0988 7 (256,448,3)
|
831 |
+
00066/0002 7 (256,448,3)
|
832 |
+
00066/0011 7 (256,448,3)
|
833 |
+
00066/0031 7 (256,448,3)
|
834 |
+
00066/0037 7 (256,448,3)
|
835 |
+
00066/0136 7 (256,448,3)
|
836 |
+
00066/0137 7 (256,448,3)
|
837 |
+
00066/0150 7 (256,448,3)
|
838 |
+
00066/0166 7 (256,448,3)
|
839 |
+
00066/0178 7 (256,448,3)
|
840 |
+
00066/0357 7 (256,448,3)
|
841 |
+
00066/0428 7 (256,448,3)
|
842 |
+
00066/0483 7 (256,448,3)
|
843 |
+
00066/0600 7 (256,448,3)
|
844 |
+
00066/0863 7 (256,448,3)
|
845 |
+
00066/0873 7 (256,448,3)
|
846 |
+
00066/0875 7 (256,448,3)
|
847 |
+
00066/0899 7 (256,448,3)
|
848 |
+
00067/0020 7 (256,448,3)
|
849 |
+
00067/0025 7 (256,448,3)
|
850 |
+
00067/0132 7 (256,448,3)
|
851 |
+
00067/0492 7 (256,448,3)
|
852 |
+
00067/0726 7 (256,448,3)
|
853 |
+
00067/0734 7 (256,448,3)
|
854 |
+
00067/0744 7 (256,448,3)
|
855 |
+
00067/0754 7 (256,448,3)
|
856 |
+
00067/0779 7 (256,448,3)
|
857 |
+
00068/0078 7 (256,448,3)
|
858 |
+
00068/0083 7 (256,448,3)
|
859 |
+
00068/0113 7 (256,448,3)
|
860 |
+
00068/0117 7 (256,448,3)
|
861 |
+
00068/0121 7 (256,448,3)
|
862 |
+
00068/0206 7 (256,448,3)
|
863 |
+
00068/0261 7 (256,448,3)
|
864 |
+
00068/0321 7 (256,448,3)
|
865 |
+
00068/0354 7 (256,448,3)
|
866 |
+
00068/0380 7 (256,448,3)
|
867 |
+
00068/0419 7 (256,448,3)
|
868 |
+
00068/0547 7 (256,448,3)
|
869 |
+
00068/0561 7 (256,448,3)
|
870 |
+
00068/0565 7 (256,448,3)
|
871 |
+
00068/0583 7 (256,448,3)
|
872 |
+
00068/0599 7 (256,448,3)
|
873 |
+
00068/0739 7 (256,448,3)
|
874 |
+
00068/0743 7 (256,448,3)
|
875 |
+
00068/0754 7 (256,448,3)
|
876 |
+
00068/0812 7 (256,448,3)
|
877 |
+
00069/0178 7 (256,448,3)
|
878 |
+
00070/0025 7 (256,448,3)
|
879 |
+
00070/0030 7 (256,448,3)
|
880 |
+
00070/0036 7 (256,448,3)
|
881 |
+
00070/0042 7 (256,448,3)
|
882 |
+
00070/0078 7 (256,448,3)
|
883 |
+
00070/0079 7 (256,448,3)
|
884 |
+
00070/0362 7 (256,448,3)
|
885 |
+
00071/0195 7 (256,448,3)
|
886 |
+
00071/0210 7 (256,448,3)
|
887 |
+
00071/0211 7 (256,448,3)
|
888 |
+
00071/0221 7 (256,448,3)
|
889 |
+
00071/0352 7 (256,448,3)
|
890 |
+
00071/0354 7 (256,448,3)
|
891 |
+
00071/0366 7 (256,448,3)
|
892 |
+
00071/0454 7 (256,448,3)
|
893 |
+
00071/0464 7 (256,448,3)
|
894 |
+
00071/0487 7 (256,448,3)
|
895 |
+
00071/0502 7 (256,448,3)
|
896 |
+
00071/0561 7 (256,448,3)
|
897 |
+
00071/0676 7 (256,448,3)
|
898 |
+
00071/0808 7 (256,448,3)
|
899 |
+
00071/0813 7 (256,448,3)
|
900 |
+
00071/0836 7 (256,448,3)
|
901 |
+
00072/0286 7 (256,448,3)
|
902 |
+
00072/0290 7 (256,448,3)
|
903 |
+
00072/0298 7 (256,448,3)
|
904 |
+
00072/0302 7 (256,448,3)
|
905 |
+
00072/0333 7 (256,448,3)
|
906 |
+
00072/0590 7 (256,448,3)
|
907 |
+
00072/0793 7 (256,448,3)
|
908 |
+
00072/0803 7 (256,448,3)
|
909 |
+
00072/0833 7 (256,448,3)
|
910 |
+
00073/0049 7 (256,448,3)
|
911 |
+
00073/0050 7 (256,448,3)
|
912 |
+
00073/0388 7 (256,448,3)
|
913 |
+
00073/0480 7 (256,448,3)
|
914 |
+
00073/0485 7 (256,448,3)
|
915 |
+
00073/0611 7 (256,448,3)
|
916 |
+
00073/0616 7 (256,448,3)
|
917 |
+
00073/0714 7 (256,448,3)
|
918 |
+
00073/0724 7 (256,448,3)
|
919 |
+
00073/0730 7 (256,448,3)
|
920 |
+
00074/0034 7 (256,448,3)
|
921 |
+
00074/0228 7 (256,448,3)
|
922 |
+
00074/0239 7 (256,448,3)
|
923 |
+
00074/0275 7 (256,448,3)
|
924 |
+
00074/0527 7 (256,448,3)
|
925 |
+
00074/0620 7 (256,448,3)
|
926 |
+
00074/0764 7 (256,448,3)
|
927 |
+
00074/0849 7 (256,448,3)
|
928 |
+
00074/0893 7 (256,448,3)
|
929 |
+
00075/0333 7 (256,448,3)
|
930 |
+
00075/0339 7 (256,448,3)
|
931 |
+
00075/0347 7 (256,448,3)
|
932 |
+
00075/0399 7 (256,448,3)
|
933 |
+
00075/0478 7 (256,448,3)
|
934 |
+
00075/0494 7 (256,448,3)
|
935 |
+
00075/0678 7 (256,448,3)
|
936 |
+
00075/0688 7 (256,448,3)
|
937 |
+
00075/0706 7 (256,448,3)
|
938 |
+
00075/0709 7 (256,448,3)
|
939 |
+
00075/0748 7 (256,448,3)
|
940 |
+
00075/0769 7 (256,448,3)
|
941 |
+
00075/0777 7 (256,448,3)
|
942 |
+
00075/0781 7 (256,448,3)
|
943 |
+
00076/0151 7 (256,448,3)
|
944 |
+
00076/0159 7 (256,448,3)
|
945 |
+
00076/0164 7 (256,448,3)
|
946 |
+
00076/0265 7 (256,448,3)
|
947 |
+
00076/0269 7 (256,448,3)
|
948 |
+
00076/0433 7 (256,448,3)
|
949 |
+
00076/0813 7 (256,448,3)
|
950 |
+
00076/0817 7 (256,448,3)
|
951 |
+
00076/0818 7 (256,448,3)
|
952 |
+
00076/0827 7 (256,448,3)
|
953 |
+
00076/0874 7 (256,448,3)
|
954 |
+
00076/0880 7 (256,448,3)
|
955 |
+
00076/0891 7 (256,448,3)
|
956 |
+
00076/0894 7 (256,448,3)
|
957 |
+
00076/0909 7 (256,448,3)
|
958 |
+
00076/0913 7 (256,448,3)
|
959 |
+
00076/0926 7 (256,448,3)
|
960 |
+
00076/0962 7 (256,448,3)
|
961 |
+
00076/0973 7 (256,448,3)
|
962 |
+
00076/0986 7 (256,448,3)
|
963 |
+
00077/0617 7 (256,448,3)
|
964 |
+
00077/0623 7 (256,448,3)
|
965 |
+
00077/0628 7 (256,448,3)
|
966 |
+
00077/0629 7 (256,448,3)
|
967 |
+
00077/0631 7 (256,448,3)
|
968 |
+
00077/0639 7 (256,448,3)
|
969 |
+
00077/0982 7 (256,448,3)
|
970 |
+
00077/0984 7 (256,448,3)
|
971 |
+
00077/0995 7 (256,448,3)
|
972 |
+
00077/0998 7 (256,448,3)
|
973 |
+
00078/0001 7 (256,448,3)
|
974 |
+
00078/0015 7 (256,448,3)
|
975 |
+
00078/0157 7 (256,448,3)
|
976 |
+
00078/0161 7 (256,448,3)
|
977 |
+
00078/0175 7 (256,448,3)
|
978 |
+
00078/0178 7 (256,448,3)
|
979 |
+
00078/0189 7 (256,448,3)
|
980 |
+
00078/0192 7 (256,448,3)
|
981 |
+
00078/0229 7 (256,448,3)
|
982 |
+
00078/0237 7 (256,448,3)
|
983 |
+
00078/0241 7 (256,448,3)
|
984 |
+
00078/0249 7 (256,448,3)
|
985 |
+
00078/0251 7 (256,448,3)
|
986 |
+
00078/0254 7 (256,448,3)
|
987 |
+
00078/0258 7 (256,448,3)
|
988 |
+
00078/0311 7 (256,448,3)
|
989 |
+
00078/0603 7 (256,448,3)
|
990 |
+
00078/0607 7 (256,448,3)
|
991 |
+
00078/0824 7 (256,448,3)
|
992 |
+
00079/0045 7 (256,448,3)
|
993 |
+
00079/0048 7 (256,448,3)
|
994 |
+
00079/0054 7 (256,448,3)
|
995 |
+
00080/0050 7 (256,448,3)
|
996 |
+
00080/0488 7 (256,448,3)
|
997 |
+
00080/0494 7 (256,448,3)
|
998 |
+
00080/0496 7 (256,448,3)
|
999 |
+
00080/0499 7 (256,448,3)
|
1000 |
+
00080/0502 7 (256,448,3)
|
1001 |
+
00080/0510 7 (256,448,3)
|
1002 |
+
00080/0534 7 (256,448,3)
|
1003 |
+
00080/0558 7 (256,448,3)
|
1004 |
+
00080/0571 7 (256,448,3)
|
1005 |
+
00080/0709 7 (256,448,3)
|
1006 |
+
00080/0882 7 (256,448,3)
|
1007 |
+
00081/0322 7 (256,448,3)
|
1008 |
+
00081/0428 7 (256,448,3)
|
1009 |
+
00081/0700 7 (256,448,3)
|
1010 |
+
00081/0706 7 (256,448,3)
|
1011 |
+
00081/0707 7 (256,448,3)
|
1012 |
+
00081/0937 7 (256,448,3)
|
1013 |
+
00082/0021 7 (256,448,3)
|
1014 |
+
00082/0424 7 (256,448,3)
|
1015 |
+
00082/0794 7 (256,448,3)
|
1016 |
+
00082/0807 7 (256,448,3)
|
1017 |
+
00082/0810 7 (256,448,3)
|
1018 |
+
00082/0824 7 (256,448,3)
|
1019 |
+
00083/0129 7 (256,448,3)
|
1020 |
+
00083/0131 7 (256,448,3)
|
1021 |
+
00083/0249 7 (256,448,3)
|
1022 |
+
00083/0250 7 (256,448,3)
|
1023 |
+
00083/0656 7 (256,448,3)
|
1024 |
+
00083/0812 7 (256,448,3)
|
1025 |
+
00083/0819 7 (256,448,3)
|
1026 |
+
00083/0824 7 (256,448,3)
|
1027 |
+
00083/0827 7 (256,448,3)
|
1028 |
+
00083/0841 7 (256,448,3)
|
1029 |
+
00083/0963 7 (256,448,3)
|
1030 |
+
00084/0047 7 (256,448,3)
|
1031 |
+
00084/0319 7 (256,448,3)
|
1032 |
+
00084/0334 7 (256,448,3)
|
1033 |
+
00084/0363 7 (256,448,3)
|
1034 |
+
00084/0493 7 (256,448,3)
|
1035 |
+
00084/0655 7 (256,448,3)
|
1036 |
+
00084/0752 7 (256,448,3)
|
1037 |
+
00084/0813 7 (256,448,3)
|
1038 |
+
00084/0886 7 (256,448,3)
|
1039 |
+
00084/0948 7 (256,448,3)
|
1040 |
+
00084/0976 7 (256,448,3)
|
1041 |
+
00085/0512 7 (256,448,3)
|
1042 |
+
00085/0641 7 (256,448,3)
|
1043 |
+
00085/0653 7 (256,448,3)
|
1044 |
+
00085/0655 7 (256,448,3)
|
1045 |
+
00085/0697 7 (256,448,3)
|
1046 |
+
00085/0698 7 (256,448,3)
|
1047 |
+
00085/0700 7 (256,448,3)
|
1048 |
+
00085/0703 7 (256,448,3)
|
1049 |
+
00085/0705 7 (256,448,3)
|
1050 |
+
00085/0709 7 (256,448,3)
|
1051 |
+
00085/0713 7 (256,448,3)
|
1052 |
+
00085/0739 7 (256,448,3)
|
1053 |
+
00085/0750 7 (256,448,3)
|
1054 |
+
00085/0763 7 (256,448,3)
|
1055 |
+
00085/0765 7 (256,448,3)
|
1056 |
+
00085/0769 7 (256,448,3)
|
1057 |
+
00085/0863 7 (256,448,3)
|
1058 |
+
00085/0868 7 (256,448,3)
|
1059 |
+
00085/0927 7 (256,448,3)
|
1060 |
+
00085/0936 7 (256,448,3)
|
1061 |
+
00085/0965 7 (256,448,3)
|
1062 |
+
00085/0969 7 (256,448,3)
|
1063 |
+
00085/0974 7 (256,448,3)
|
1064 |
+
00085/0981 7 (256,448,3)
|
1065 |
+
00085/0982 7 (256,448,3)
|
1066 |
+
00085/1000 7 (256,448,3)
|
1067 |
+
00086/0003 7 (256,448,3)
|
1068 |
+
00086/0009 7 (256,448,3)
|
1069 |
+
00086/0011 7 (256,448,3)
|
1070 |
+
00086/0028 7 (256,448,3)
|
1071 |
+
00086/0032 7 (256,448,3)
|
1072 |
+
00086/0034 7 (256,448,3)
|
1073 |
+
00086/0035 7 (256,448,3)
|
1074 |
+
00086/0042 7 (256,448,3)
|
1075 |
+
00086/0064 7 (256,448,3)
|
1076 |
+
00086/0066 7 (256,448,3)
|
1077 |
+
00086/0095 7 (256,448,3)
|
1078 |
+
00086/0099 7 (256,448,3)
|
1079 |
+
00086/0101 7 (256,448,3)
|
1080 |
+
00086/0104 7 (256,448,3)
|
1081 |
+
00086/0115 7 (256,448,3)
|
1082 |
+
00086/0116 7 (256,448,3)
|
1083 |
+
00086/0284 7 (256,448,3)
|
1084 |
+
00086/0291 7 (256,448,3)
|
1085 |
+
00086/0295 7 (256,448,3)
|
1086 |
+
00086/0302 7 (256,448,3)
|
1087 |
+
00086/0318 7 (256,448,3)
|
1088 |
+
00086/0666 7 (256,448,3)
|
1089 |
+
00086/0797 7 (256,448,3)
|
1090 |
+
00086/0851 7 (256,448,3)
|
1091 |
+
00086/0855 7 (256,448,3)
|
1092 |
+
00086/0874 7 (256,448,3)
|
1093 |
+
00086/0878 7 (256,448,3)
|
1094 |
+
00086/0881 7 (256,448,3)
|
1095 |
+
00086/0883 7 (256,448,3)
|
1096 |
+
00086/0896 7 (256,448,3)
|
1097 |
+
00086/0899 7 (256,448,3)
|
1098 |
+
00086/0903 7 (256,448,3)
|
1099 |
+
00086/0989 7 (256,448,3)
|
1100 |
+
00087/0008 7 (256,448,3)
|
1101 |
+
00087/0429 7 (256,448,3)
|
1102 |
+
00087/0511 7 (256,448,3)
|
1103 |
+
00088/0241 7 (256,448,3)
|
1104 |
+
00088/0319 7 (256,448,3)
|
1105 |
+
00088/0323 7 (256,448,3)
|
1106 |
+
00088/0411 7 (256,448,3)
|
1107 |
+
00088/0427 7 (256,448,3)
|
1108 |
+
00088/0452 7 (256,448,3)
|
1109 |
+
00088/0463 7 (256,448,3)
|
1110 |
+
00088/0476 7 (256,448,3)
|
1111 |
+
00088/0496 7 (256,448,3)
|
1112 |
+
00088/0559 7 (256,448,3)
|
1113 |
+
00089/0058 7 (256,448,3)
|
1114 |
+
00089/0061 7 (256,448,3)
|
1115 |
+
00089/0069 7 (256,448,3)
|
1116 |
+
00089/0077 7 (256,448,3)
|
1117 |
+
00089/0096 7 (256,448,3)
|
1118 |
+
00089/0099 7 (256,448,3)
|
1119 |
+
00089/0100 7 (256,448,3)
|
1120 |
+
00089/0211 7 (256,448,3)
|
1121 |
+
00089/0380 7 (256,448,3)
|
1122 |
+
00089/0381 7 (256,448,3)
|
1123 |
+
00089/0384 7 (256,448,3)
|
1124 |
+
00089/0390 7 (256,448,3)
|
1125 |
+
00089/0393 7 (256,448,3)
|
1126 |
+
00089/0394 7 (256,448,3)
|
1127 |
+
00089/0395 7 (256,448,3)
|
1128 |
+
00089/0406 7 (256,448,3)
|
1129 |
+
00089/0410 7 (256,448,3)
|
1130 |
+
00089/0412 7 (256,448,3)
|
1131 |
+
00089/0703 7 (256,448,3)
|
1132 |
+
00089/0729 7 (256,448,3)
|
1133 |
+
00089/0930 7 (256,448,3)
|
1134 |
+
00089/0952 7 (256,448,3)
|
1135 |
+
00090/0062 7 (256,448,3)
|
1136 |
+
00090/0101 7 (256,448,3)
|
1137 |
+
00090/0213 7 (256,448,3)
|
1138 |
+
00090/0216 7 (256,448,3)
|
1139 |
+
00090/0268 7 (256,448,3)
|
1140 |
+
00090/0406 7 (256,448,3)
|
1141 |
+
00090/0411 7 (256,448,3)
|
1142 |
+
00090/0442 7 (256,448,3)
|
1143 |
+
00090/0535 7 (256,448,3)
|
1144 |
+
00090/0542 7 (256,448,3)
|
1145 |
+
00090/0571 7 (256,448,3)
|
1146 |
+
00090/0934 7 (256,448,3)
|
1147 |
+
00090/0938 7 (256,448,3)
|
1148 |
+
00090/0947 7 (256,448,3)
|
1149 |
+
00091/0066 7 (256,448,3)
|
1150 |
+
00091/0448 7 (256,448,3)
|
1151 |
+
00091/0451 7 (256,448,3)
|
1152 |
+
00091/0454 7 (256,448,3)
|
1153 |
+
00091/0457 7 (256,448,3)
|
1154 |
+
00091/0467 7 (256,448,3)
|
1155 |
+
00091/0470 7 (256,448,3)
|
1156 |
+
00091/0477 7 (256,448,3)
|
1157 |
+
00091/0583 7 (256,448,3)
|
1158 |
+
00091/0981 7 (256,448,3)
|
1159 |
+
00091/0994 7 (256,448,3)
|
1160 |
+
00092/0112 7 (256,448,3)
|
1161 |
+
00092/0119 7 (256,448,3)
|
1162 |
+
00092/0129 7 (256,448,3)
|
1163 |
+
00092/0146 7 (256,448,3)
|
1164 |
+
00092/0149 7 (256,448,3)
|
1165 |
+
00092/0608 7 (256,448,3)
|
1166 |
+
00092/0643 7 (256,448,3)
|
1167 |
+
00092/0646 7 (256,448,3)
|
1168 |
+
00092/0766 7 (256,448,3)
|
1169 |
+
00092/0768 7 (256,448,3)
|
1170 |
+
00092/0779 7 (256,448,3)
|
1171 |
+
00093/0081 7 (256,448,3)
|
1172 |
+
00093/0085 7 (256,448,3)
|
1173 |
+
00093/0135 7 (256,448,3)
|
1174 |
+
00093/0241 7 (256,448,3)
|
1175 |
+
00093/0277 7 (256,448,3)
|
1176 |
+
00093/0283 7 (256,448,3)
|
1177 |
+
00093/0320 7 (256,448,3)
|
1178 |
+
00093/0598 7 (256,448,3)
|
1179 |
+
00094/0159 7 (256,448,3)
|
1180 |
+
00094/0253 7 (256,448,3)
|
1181 |
+
00094/0265 7 (256,448,3)
|
1182 |
+
00094/0267 7 (256,448,3)
|
1183 |
+
00094/0269 7 (256,448,3)
|
1184 |
+
00094/0281 7 (256,448,3)
|
1185 |
+
00094/0293 7 (256,448,3)
|
1186 |
+
00094/0404 7 (256,448,3)
|
1187 |
+
00094/0593 7 (256,448,3)
|
1188 |
+
00094/0612 7 (256,448,3)
|
1189 |
+
00094/0638 7 (256,448,3)
|
1190 |
+
00094/0656 7 (256,448,3)
|
1191 |
+
00094/0668 7 (256,448,3)
|
1192 |
+
00094/0786 7 (256,448,3)
|
1193 |
+
00094/0870 7 (256,448,3)
|
1194 |
+
00094/0897 7 (256,448,3)
|
1195 |
+
00094/0900 7 (256,448,3)
|
1196 |
+
00094/0944 7 (256,448,3)
|
1197 |
+
00094/0946 7 (256,448,3)
|
1198 |
+
00094/0952 7 (256,448,3)
|
1199 |
+
00094/0969 7 (256,448,3)
|
1200 |
+
00094/0973 7 (256,448,3)
|
1201 |
+
00094/0981 7 (256,448,3)
|
1202 |
+
00095/0088 7 (256,448,3)
|
1203 |
+
00095/0125 7 (256,448,3)
|
1204 |
+
00095/0130 7 (256,448,3)
|
1205 |
+
00095/0142 7 (256,448,3)
|
1206 |
+
00095/0151 7 (256,448,3)
|
1207 |
+
00095/0180 7 (256,448,3)
|
1208 |
+
00095/0192 7 (256,448,3)
|
1209 |
+
00095/0194 7 (256,448,3)
|
1210 |
+
00095/0195 7 (256,448,3)
|
1211 |
+
00095/0204 7 (256,448,3)
|
1212 |
+
00095/0245 7 (256,448,3)
|
1213 |
+
00095/0315 7 (256,448,3)
|
1214 |
+
00095/0321 7 (256,448,3)
|
1215 |
+
00095/0324 7 (256,448,3)
|
1216 |
+
00095/0327 7 (256,448,3)
|
1217 |
+
00095/0730 7 (256,448,3)
|
1218 |
+
00095/0731 7 (256,448,3)
|
1219 |
+
00095/0741 7 (256,448,3)
|
1220 |
+
00095/0948 7 (256,448,3)
|
1221 |
+
00096/0407 7 (256,448,3)
|
1222 |
+
00096/0420 7 (256,448,3)
|
1223 |
+
00096/0435 7 (256,448,3)
|
1224 |
+
00096/0682 7 (256,448,3)
|
1225 |
+
00096/0865 7 (256,448,3)
|
basicsr/data/meta_info/meta_info_Vimeo90K_test_medium_GT.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
basicsr/data/meta_info/meta_info_Vimeo90K_test_slow_GT.txt
ADDED
@@ -0,0 +1,1613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
00001/0266 7 (256,448,3)
|
2 |
+
00001/0268 7 (256,448,3)
|
3 |
+
00001/0275 7 (256,448,3)
|
4 |
+
00001/0278 7 (256,448,3)
|
5 |
+
00001/0287 7 (256,448,3)
|
6 |
+
00001/0291 7 (256,448,3)
|
7 |
+
00001/0627 7 (256,448,3)
|
8 |
+
00001/0636 7 (256,448,3)
|
9 |
+
00001/0804 7 (256,448,3)
|
10 |
+
00001/0837 7 (256,448,3)
|
11 |
+
00001/0849 7 (256,448,3)
|
12 |
+
00001/0851 7 (256,448,3)
|
13 |
+
00001/0852 7 (256,448,3)
|
14 |
+
00001/0986 7 (256,448,3)
|
15 |
+
00001/0991 7 (256,448,3)
|
16 |
+
00002/0007 7 (256,448,3)
|
17 |
+
00002/0008 7 (256,448,3)
|
18 |
+
00002/0016 7 (256,448,3)
|
19 |
+
00002/0036 7 (256,448,3)
|
20 |
+
00002/0091 7 (256,448,3)
|
21 |
+
00002/0093 7 (256,448,3)
|
22 |
+
00002/0209 7 (256,448,3)
|
23 |
+
00002/0235 7 (256,448,3)
|
24 |
+
00002/0236 7 (256,448,3)
|
25 |
+
00002/0241 7 (256,448,3)
|
26 |
+
00002/0466 7 (256,448,3)
|
27 |
+
00002/0504 7 (256,448,3)
|
28 |
+
00002/0960 7 (256,448,3)
|
29 |
+
00002/0961 7 (256,448,3)
|
30 |
+
00002/0964 7 (256,448,3)
|
31 |
+
00003/0007 7 (256,448,3)
|
32 |
+
00003/0069 7 (256,448,3)
|
33 |
+
00003/0345 7 (256,448,3)
|
34 |
+
00003/0347 7 (256,448,3)
|
35 |
+
00003/0372 7 (256,448,3)
|
36 |
+
00003/0525 7 (256,448,3)
|
37 |
+
00003/0652 7 (256,448,3)
|
38 |
+
00003/0667 7 (256,448,3)
|
39 |
+
00003/0669 7 (256,448,3)
|
40 |
+
00003/0706 7 (256,448,3)
|
41 |
+
00003/0713 7 (256,448,3)
|
42 |
+
00003/0721 7 (256,448,3)
|
43 |
+
00003/0747 7 (256,448,3)
|
44 |
+
00003/0829 7 (256,448,3)
|
45 |
+
00003/0916 7 (256,448,3)
|
46 |
+
00003/0918 7 (256,448,3)
|
47 |
+
00003/0924 7 (256,448,3)
|
48 |
+
00003/0926 7 (256,448,3)
|
49 |
+
00003/0927 7 (256,448,3)
|
50 |
+
00004/0288 7 (256,448,3)
|
51 |
+
00004/0303 7 (256,448,3)
|
52 |
+
00004/0307 7 (256,448,3)
|
53 |
+
00004/0628 7 (256,448,3)
|
54 |
+
00004/0713 7 (256,448,3)
|
55 |
+
00004/0715 7 (256,448,3)
|
56 |
+
00004/0719 7 (256,448,3)
|
57 |
+
00004/0727 7 (256,448,3)
|
58 |
+
00004/0821 7 (256,448,3)
|
59 |
+
00005/0006 7 (256,448,3)
|
60 |
+
00005/0007 7 (256,448,3)
|
61 |
+
00005/0012 7 (256,448,3)
|
62 |
+
00005/0013 7 (256,448,3)
|
63 |
+
00005/0040 7 (256,448,3)
|
64 |
+
00005/0055 7 (256,448,3)
|
65 |
+
00005/0119 7 (256,448,3)
|
66 |
+
00005/0130 7 (256,448,3)
|
67 |
+
00005/0185 7 (256,448,3)
|
68 |
+
00005/0198 7 (256,448,3)
|
69 |
+
00005/0270 7 (256,448,3)
|
70 |
+
00005/0541 7 (256,448,3)
|
71 |
+
00005/0560 7 (256,448,3)
|
72 |
+
00005/0660 7 (256,448,3)
|
73 |
+
00005/0682 7 (256,448,3)
|
74 |
+
00005/0683 7 (256,448,3)
|
75 |
+
00005/0688 7 (256,448,3)
|
76 |
+
00005/0706 7 (256,448,3)
|
77 |
+
00005/0728 7 (256,448,3)
|
78 |
+
00005/0732 7 (256,448,3)
|
79 |
+
00005/0739 7 (256,448,3)
|
80 |
+
00005/0804 7 (256,448,3)
|
81 |
+
00005/0805 7 (256,448,3)
|
82 |
+
00005/0827 7 (256,448,3)
|
83 |
+
00005/0828 7 (256,448,3)
|
84 |
+
00005/0857 7 (256,448,3)
|
85 |
+
00005/0861 7 (256,448,3)
|
86 |
+
00005/0862 7 (256,448,3)
|
87 |
+
00005/0868 7 (256,448,3)
|
88 |
+
00005/0872 7 (256,448,3)
|
89 |
+
00005/0933 7 (256,448,3)
|
90 |
+
00005/0958 7 (256,448,3)
|
91 |
+
00005/0960 7 (256,448,3)
|
92 |
+
00006/0087 7 (256,448,3)
|
93 |
+
00006/0090 7 (256,448,3)
|
94 |
+
00006/0351 7 (256,448,3)
|
95 |
+
00006/0353 7 (256,448,3)
|
96 |
+
00006/0558 7 (256,448,3)
|
97 |
+
00006/0588 7 (256,448,3)
|
98 |
+
00006/0619 7 (256,448,3)
|
99 |
+
00006/0621 7 (256,448,3)
|
100 |
+
00006/0748 7 (256,448,3)
|
101 |
+
00006/0796 7 (256,448,3)
|
102 |
+
00006/0805 7 (256,448,3)
|
103 |
+
00006/0807 7 (256,448,3)
|
104 |
+
00007/0236 7 (256,448,3)
|
105 |
+
00007/0240 7 (256,448,3)
|
106 |
+
00007/0243 7 (256,448,3)
|
107 |
+
00007/0246 7 (256,448,3)
|
108 |
+
00007/0247 7 (256,448,3)
|
109 |
+
00007/0252 7 (256,448,3)
|
110 |
+
00007/0322 7 (256,448,3)
|
111 |
+
00007/0458 7 (256,448,3)
|
112 |
+
00007/0492 7 (256,448,3)
|
113 |
+
00007/0658 7 (256,448,3)
|
114 |
+
00007/0717 7 (256,448,3)
|
115 |
+
00007/0722 7 (256,448,3)
|
116 |
+
00007/0725 7 (256,448,3)
|
117 |
+
00007/0740 7 (256,448,3)
|
118 |
+
00007/0748 7 (256,448,3)
|
119 |
+
00007/0749 7 (256,448,3)
|
120 |
+
00007/0759 7 (256,448,3)
|
121 |
+
00007/0772 7 (256,448,3)
|
122 |
+
00007/0783 7 (256,448,3)
|
123 |
+
00007/0787 7 (256,448,3)
|
124 |
+
00007/0883 7 (256,448,3)
|
125 |
+
00008/0033 7 (256,448,3)
|
126 |
+
00008/0035 7 (256,448,3)
|
127 |
+
00008/0091 7 (256,448,3)
|
128 |
+
00008/0154 7 (256,448,3)
|
129 |
+
00008/0966 7 (256,448,3)
|
130 |
+
00008/0987 7 (256,448,3)
|
131 |
+
00009/0108 7 (256,448,3)
|
132 |
+
00009/0607 7 (256,448,3)
|
133 |
+
00009/0668 7 (256,448,3)
|
134 |
+
00009/0683 7 (256,448,3)
|
135 |
+
00009/0941 7 (256,448,3)
|
136 |
+
00009/0949 7 (256,448,3)
|
137 |
+
00009/0962 7 (256,448,3)
|
138 |
+
00009/0972 7 (256,448,3)
|
139 |
+
00009/0974 7 (256,448,3)
|
140 |
+
00010/0014 7 (256,448,3)
|
141 |
+
00010/0018 7 (256,448,3)
|
142 |
+
00010/0043 7 (256,448,3)
|
143 |
+
00010/0099 7 (256,448,3)
|
144 |
+
00010/0252 7 (256,448,3)
|
145 |
+
00010/0296 7 (256,448,3)
|
146 |
+
00010/0413 7 (256,448,3)
|
147 |
+
00010/0422 7 (256,448,3)
|
148 |
+
00010/0516 7 (256,448,3)
|
149 |
+
00010/0525 7 (256,448,3)
|
150 |
+
00010/0556 7 (256,448,3)
|
151 |
+
00010/0701 7 (256,448,3)
|
152 |
+
00010/0740 7 (256,448,3)
|
153 |
+
00010/0772 7 (256,448,3)
|
154 |
+
00010/0831 7 (256,448,3)
|
155 |
+
00010/0925 7 (256,448,3)
|
156 |
+
00011/0013 7 (256,448,3)
|
157 |
+
00011/0016 7 (256,448,3)
|
158 |
+
00011/0017 7 (256,448,3)
|
159 |
+
00011/0249 7 (256,448,3)
|
160 |
+
00011/0826 7 (256,448,3)
|
161 |
+
00011/0827 7 (256,448,3)
|
162 |
+
00011/0831 7 (256,448,3)
|
163 |
+
00011/0833 7 (256,448,3)
|
164 |
+
00011/0835 7 (256,448,3)
|
165 |
+
00011/0998 7 (256,448,3)
|
166 |
+
00012/0023 7 (256,448,3)
|
167 |
+
00012/0024 7 (256,448,3)
|
168 |
+
00012/0027 7 (256,448,3)
|
169 |
+
00012/0037 7 (256,448,3)
|
170 |
+
00012/0444 7 (256,448,3)
|
171 |
+
00012/0445 7 (256,448,3)
|
172 |
+
00012/0451 7 (256,448,3)
|
173 |
+
00012/0461 7 (256,448,3)
|
174 |
+
00012/0521 7 (256,448,3)
|
175 |
+
00012/0758 7 (256,448,3)
|
176 |
+
00012/0760 7 (256,448,3)
|
177 |
+
00012/0771 7 (256,448,3)
|
178 |
+
00012/0903 7 (256,448,3)
|
179 |
+
00012/0909 7 (256,448,3)
|
180 |
+
00013/0581 7 (256,448,3)
|
181 |
+
00013/0786 7 (256,448,3)
|
182 |
+
00013/0789 7 (256,448,3)
|
183 |
+
00013/0791 7 (256,448,3)
|
184 |
+
00013/0798 7 (256,448,3)
|
185 |
+
00013/0802 7 (256,448,3)
|
186 |
+
00013/0820 7 (256,448,3)
|
187 |
+
00013/0850 7 (256,448,3)
|
188 |
+
00013/0854 7 (256,448,3)
|
189 |
+
00013/0894 7 (256,448,3)
|
190 |
+
00013/0919 7 (256,448,3)
|
191 |
+
00013/0999 7 (256,448,3)
|
192 |
+
00014/0001 7 (256,448,3)
|
193 |
+
00014/0014 7 (256,448,3)
|
194 |
+
00014/0018 7 (256,448,3)
|
195 |
+
00014/0244 7 (256,448,3)
|
196 |
+
00014/0475 7 (256,448,3)
|
197 |
+
00014/0483 7 (256,448,3)
|
198 |
+
00014/0680 7 (256,448,3)
|
199 |
+
00014/0700 7 (256,448,3)
|
200 |
+
00014/0701 7 (256,448,3)
|
201 |
+
00014/0706 7 (256,448,3)
|
202 |
+
00014/0712 7 (256,448,3)
|
203 |
+
00014/0713 7 (256,448,3)
|
204 |
+
00014/0717 7 (256,448,3)
|
205 |
+
00014/0719 7 (256,448,3)
|
206 |
+
00014/0728 7 (256,448,3)
|
207 |
+
00014/0734 7 (256,448,3)
|
208 |
+
00014/0736 7 (256,448,3)
|
209 |
+
00014/0738 7 (256,448,3)
|
210 |
+
00014/0742 7 (256,448,3)
|
211 |
+
00014/0745 7 (256,448,3)
|
212 |
+
00014/0746 7 (256,448,3)
|
213 |
+
00014/0750 7 (256,448,3)
|
214 |
+
00014/0769 7 (256,448,3)
|
215 |
+
00014/0774 7 (256,448,3)
|
216 |
+
00014/0781 7 (256,448,3)
|
217 |
+
00014/0782 7 (256,448,3)
|
218 |
+
00014/0852 7 (256,448,3)
|
219 |
+
00014/0853 7 (256,448,3)
|
220 |
+
00014/0855 7 (256,448,3)
|
221 |
+
00014/0867 7 (256,448,3)
|
222 |
+
00014/0876 7 (256,448,3)
|
223 |
+
00014/0881 7 (256,448,3)
|
224 |
+
00014/0890 7 (256,448,3)
|
225 |
+
00014/0914 7 (256,448,3)
|
226 |
+
00015/0033 7 (256,448,3)
|
227 |
+
00015/0113 7 (256,448,3)
|
228 |
+
00015/0125 7 (256,448,3)
|
229 |
+
00015/0185 7 (256,448,3)
|
230 |
+
00015/0194 7 (256,448,3)
|
231 |
+
00015/0202 7 (256,448,3)
|
232 |
+
00015/0312 7 (256,448,3)
|
233 |
+
00015/0688 7 (256,448,3)
|
234 |
+
00015/0698 7 (256,448,3)
|
235 |
+
00015/0788 7 (256,448,3)
|
236 |
+
00015/0854 7 (256,448,3)
|
237 |
+
00015/0863 7 (256,448,3)
|
238 |
+
00015/0864 7 (256,448,3)
|
239 |
+
00015/0918 7 (256,448,3)
|
240 |
+
00015/0931 7 (256,448,3)
|
241 |
+
00016/0276 7 (256,448,3)
|
242 |
+
00016/0301 7 (256,448,3)
|
243 |
+
00016/0306 7 (256,448,3)
|
244 |
+
00016/0324 7 (256,448,3)
|
245 |
+
00016/0362 7 (256,448,3)
|
246 |
+
00016/0364 7 (256,448,3)
|
247 |
+
00016/0370 7 (256,448,3)
|
248 |
+
00016/0378 7 (256,448,3)
|
249 |
+
00016/0379 7 (256,448,3)
|
250 |
+
00016/0402 7 (256,448,3)
|
251 |
+
00016/0405 7 (256,448,3)
|
252 |
+
00016/0418 7 (256,448,3)
|
253 |
+
00016/0419 7 (256,448,3)
|
254 |
+
00016/0435 7 (256,448,3)
|
255 |
+
00016/0501 7 (256,448,3)
|
256 |
+
00016/0561 7 (256,448,3)
|
257 |
+
00016/0562 7 (256,448,3)
|
258 |
+
00016/0569 7 (256,448,3)
|
259 |
+
00016/0591 7 (256,448,3)
|
260 |
+
00016/0599 7 (256,448,3)
|
261 |
+
00016/0711 7 (256,448,3)
|
262 |
+
00016/0713 7 (256,448,3)
|
263 |
+
00016/0813 7 (256,448,3)
|
264 |
+
00016/0953 7 (256,448,3)
|
265 |
+
00016/0960 7 (256,448,3)
|
266 |
+
00016/0961 7 (256,448,3)
|
267 |
+
00017/0519 7 (256,448,3)
|
268 |
+
00017/0523 7 (256,448,3)
|
269 |
+
00017/0588 7 (256,448,3)
|
270 |
+
00017/0608 7 (256,448,3)
|
271 |
+
00017/0609 7 (256,448,3)
|
272 |
+
00017/0719 7 (256,448,3)
|
273 |
+
00017/0721 7 (256,448,3)
|
274 |
+
00017/0727 7 (256,448,3)
|
275 |
+
00017/0728 7 (256,448,3)
|
276 |
+
00017/0769 7 (256,448,3)
|
277 |
+
00017/0775 7 (256,448,3)
|
278 |
+
00017/0787 7 (256,448,3)
|
279 |
+
00017/0797 7 (256,448,3)
|
280 |
+
00018/0043 7 (256,448,3)
|
281 |
+
00018/0206 7 (256,448,3)
|
282 |
+
00018/0209 7 (256,448,3)
|
283 |
+
00018/0211 7 (256,448,3)
|
284 |
+
00018/0216 7 (256,448,3)
|
285 |
+
00018/0220 7 (256,448,3)
|
286 |
+
00018/0221 7 (256,448,3)
|
287 |
+
00018/0252 7 (256,448,3)
|
288 |
+
00018/0260 7 (256,448,3)
|
289 |
+
00018/0331 7 (256,448,3)
|
290 |
+
00018/0333 7 (256,448,3)
|
291 |
+
00018/0447 7 (256,448,3)
|
292 |
+
00018/0523 7 (256,448,3)
|
293 |
+
00019/0014 7 (256,448,3)
|
294 |
+
00019/0015 7 (256,448,3)
|
295 |
+
00019/0019 7 (256,448,3)
|
296 |
+
00019/0049 7 (256,448,3)
|
297 |
+
00019/0109 7 (256,448,3)
|
298 |
+
00019/0114 7 (256,448,3)
|
299 |
+
00019/0125 7 (256,448,3)
|
300 |
+
00019/0137 7 (256,448,3)
|
301 |
+
00019/0140 7 (256,448,3)
|
302 |
+
00019/0148 7 (256,448,3)
|
303 |
+
00019/0153 7 (256,448,3)
|
304 |
+
00019/0155 7 (256,448,3)
|
305 |
+
00019/0158 7 (256,448,3)
|
306 |
+
00019/0159 7 (256,448,3)
|
307 |
+
00019/0160 7 (256,448,3)
|
308 |
+
00019/0162 7 (256,448,3)
|
309 |
+
00019/0279 7 (256,448,3)
|
310 |
+
00019/0282 7 (256,448,3)
|
311 |
+
00019/0409 7 (256,448,3)
|
312 |
+
00019/0427 7 (256,448,3)
|
313 |
+
00019/0430 7 (256,448,3)
|
314 |
+
00019/0545 7 (256,448,3)
|
315 |
+
00019/0555 7 (256,448,3)
|
316 |
+
00019/0558 7 (256,448,3)
|
317 |
+
00019/0650 7 (256,448,3)
|
318 |
+
00019/0681 7 (256,448,3)
|
319 |
+
00019/0747 7 (256,448,3)
|
320 |
+
00019/0748 7 (256,448,3)
|
321 |
+
00019/0749 7 (256,448,3)
|
322 |
+
00019/0752 7 (256,448,3)
|
323 |
+
00019/0768 7 (256,448,3)
|
324 |
+
00019/0772 7 (256,448,3)
|
325 |
+
00019/0773 7 (256,448,3)
|
326 |
+
00019/0777 7 (256,448,3)
|
327 |
+
00019/0795 7 (256,448,3)
|
328 |
+
00019/0806 7 (256,448,3)
|
329 |
+
00019/0815 7 (256,448,3)
|
330 |
+
00019/0840 7 (256,448,3)
|
331 |
+
00019/0844 7 (256,448,3)
|
332 |
+
00019/0848 7 (256,448,3)
|
333 |
+
00019/0853 7 (256,448,3)
|
334 |
+
00019/0863 7 (256,448,3)
|
335 |
+
00019/0888 7 (256,448,3)
|
336 |
+
00019/0894 7 (256,448,3)
|
337 |
+
00019/0901 7 (256,448,3)
|
338 |
+
00019/0995 7 (256,448,3)
|
339 |
+
00021/0030 7 (256,448,3)
|
340 |
+
00021/0035 7 (256,448,3)
|
341 |
+
00021/0039 7 (256,448,3)
|
342 |
+
00021/0041 7 (256,448,3)
|
343 |
+
00021/0044 7 (256,448,3)
|
344 |
+
00021/0045 7 (256,448,3)
|
345 |
+
00021/0264 7 (256,448,3)
|
346 |
+
00021/0330 7 (256,448,3)
|
347 |
+
00021/0332 7 (256,448,3)
|
348 |
+
00021/0333 7 (256,448,3)
|
349 |
+
00021/0336 7 (256,448,3)
|
350 |
+
00021/0337 7 (256,448,3)
|
351 |
+
00021/0338 7 (256,448,3)
|
352 |
+
00021/0343 7 (256,448,3)
|
353 |
+
00021/0472 7 (256,448,3)
|
354 |
+
00021/0667 7 (256,448,3)
|
355 |
+
00021/0731 7 (256,448,3)
|
356 |
+
00021/0779 7 (256,448,3)
|
357 |
+
00021/0805 7 (256,448,3)
|
358 |
+
00021/0814 7 (256,448,3)
|
359 |
+
00021/0818 7 (256,448,3)
|
360 |
+
00021/0874 7 (256,448,3)
|
361 |
+
00022/0008 7 (256,448,3)
|
362 |
+
00022/0010 7 (256,448,3)
|
363 |
+
00022/0231 7 (256,448,3)
|
364 |
+
00022/0323 7 (256,448,3)
|
365 |
+
00022/0337 7 (256,448,3)
|
366 |
+
00022/0359 7 (256,448,3)
|
367 |
+
00022/0377 7 (256,448,3)
|
368 |
+
00022/0378 7 (256,448,3)
|
369 |
+
00022/0385 7 (256,448,3)
|
370 |
+
00022/0393 7 (256,448,3)
|
371 |
+
00022/0424 7 (256,448,3)
|
372 |
+
00022/0582 7 (256,448,3)
|
373 |
+
00022/0583 7 (256,448,3)
|
374 |
+
00022/0605 7 (256,448,3)
|
375 |
+
00022/0632 7 (256,448,3)
|
376 |
+
00022/0633 7 (256,448,3)
|
377 |
+
00022/0666 7 (256,448,3)
|
378 |
+
00022/0671 7 (256,448,3)
|
379 |
+
00022/0673 7 (256,448,3)
|
380 |
+
00022/0702 7 (256,448,3)
|
381 |
+
00022/0852 7 (256,448,3)
|
382 |
+
00022/0853 7 (256,448,3)
|
383 |
+
00022/0971 7 (256,448,3)
|
384 |
+
00023/0037 7 (256,448,3)
|
385 |
+
00023/0224 7 (256,448,3)
|
386 |
+
00023/0308 7 (256,448,3)
|
387 |
+
00023/0393 7 (256,448,3)
|
388 |
+
00023/0633 7 (256,448,3)
|
389 |
+
00023/0637 7 (256,448,3)
|
390 |
+
00023/0638 7 (256,448,3)
|
391 |
+
00023/0770 7 (256,448,3)
|
392 |
+
00023/0786 7 (256,448,3)
|
393 |
+
00023/0898 7 (256,448,3)
|
394 |
+
00024/0247 7 (256,448,3)
|
395 |
+
00024/0251 7 (256,448,3)
|
396 |
+
00024/0267 7 (256,448,3)
|
397 |
+
00024/0288 7 (256,448,3)
|
398 |
+
00024/0530 7 (256,448,3)
|
399 |
+
00024/0569 7 (256,448,3)
|
400 |
+
00024/0587 7 (256,448,3)
|
401 |
+
00024/0730 7 (256,448,3)
|
402 |
+
00024/0736 7 (256,448,3)
|
403 |
+
00024/0742 7 (256,448,3)
|
404 |
+
00024/0832 7 (256,448,3)
|
405 |
+
00024/0936 7 (256,448,3)
|
406 |
+
00025/0044 7 (256,448,3)
|
407 |
+
00025/0047 7 (256,448,3)
|
408 |
+
00025/0540 7 (256,448,3)
|
409 |
+
00025/0552 7 (256,448,3)
|
410 |
+
00025/0554 7 (256,448,3)
|
411 |
+
00025/0559 7 (256,448,3)
|
412 |
+
00025/0572 7 (256,448,3)
|
413 |
+
00025/0576 7 (256,448,3)
|
414 |
+
00025/0699 7 (256,448,3)
|
415 |
+
00025/0709 7 (256,448,3)
|
416 |
+
00025/0743 7 (256,448,3)
|
417 |
+
00025/0767 7 (256,448,3)
|
418 |
+
00025/0780 7 (256,448,3)
|
419 |
+
00025/0782 7 (256,448,3)
|
420 |
+
00025/0784 7 (256,448,3)
|
421 |
+
00025/0791 7 (256,448,3)
|
422 |
+
00025/0889 7 (256,448,3)
|
423 |
+
00025/0890 7 (256,448,3)
|
424 |
+
00025/0894 7 (256,448,3)
|
425 |
+
00025/0896 7 (256,448,3)
|
426 |
+
00025/0898 7 (256,448,3)
|
427 |
+
00025/0905 7 (256,448,3)
|
428 |
+
00025/0999 7 (256,448,3)
|
429 |
+
00026/0003 7 (256,448,3)
|
430 |
+
00026/0005 7 (256,448,3)
|
431 |
+
00026/0011 7 (256,448,3)
|
432 |
+
00026/0017 7 (256,448,3)
|
433 |
+
00026/0036 7 (256,448,3)
|
434 |
+
00026/0129 7 (256,448,3)
|
435 |
+
00026/0131 7 (256,448,3)
|
436 |
+
00026/0161 7 (256,448,3)
|
437 |
+
00026/0177 7 (256,448,3)
|
438 |
+
00026/0178 7 (256,448,3)
|
439 |
+
00026/0180 7 (256,448,3)
|
440 |
+
00026/0298 7 (256,448,3)
|
441 |
+
00026/0307 7 (256,448,3)
|
442 |
+
00026/0308 7 (256,448,3)
|
443 |
+
00026/0312 7 (256,448,3)
|
444 |
+
00026/0352 7 (256,448,3)
|
445 |
+
00026/0440 7 (256,448,3)
|
446 |
+
00026/0706 7 (256,448,3)
|
447 |
+
00026/0708 7 (256,448,3)
|
448 |
+
00026/0715 7 (256,448,3)
|
449 |
+
00026/0769 7 (256,448,3)
|
450 |
+
00026/0777 7 (256,448,3)
|
451 |
+
00026/0779 7 (256,448,3)
|
452 |
+
00026/0789 7 (256,448,3)
|
453 |
+
00026/0924 7 (256,448,3)
|
454 |
+
00026/0928 7 (256,448,3)
|
455 |
+
00026/0932 7 (256,448,3)
|
456 |
+
00026/0935 7 (256,448,3)
|
457 |
+
00027/0118 7 (256,448,3)
|
458 |
+
00027/0121 7 (256,448,3)
|
459 |
+
00027/0155 7 (256,448,3)
|
460 |
+
00027/0168 7 (256,448,3)
|
461 |
+
00027/0196 7 (256,448,3)
|
462 |
+
00027/0289 7 (256,448,3)
|
463 |
+
00027/0294 7 (256,448,3)
|
464 |
+
00027/0803 7 (256,448,3)
|
465 |
+
00028/0016 7 (256,448,3)
|
466 |
+
00028/0045 7 (256,448,3)
|
467 |
+
00028/0063 7 (256,448,3)
|
468 |
+
00028/0601 7 (256,448,3)
|
469 |
+
00028/0638 7 (256,448,3)
|
470 |
+
00028/0733 7 (256,448,3)
|
471 |
+
00028/0736 7 (256,448,3)
|
472 |
+
00028/0741 7 (256,448,3)
|
473 |
+
00028/0753 7 (256,448,3)
|
474 |
+
00028/0770 7 (256,448,3)
|
475 |
+
00028/0771 7 (256,448,3)
|
476 |
+
00028/0777 7 (256,448,3)
|
477 |
+
00028/0950 7 (256,448,3)
|
478 |
+
00028/0951 7 (256,448,3)
|
479 |
+
00029/0048 7 (256,448,3)
|
480 |
+
00029/0060 7 (256,448,3)
|
481 |
+
00029/0362 7 (256,448,3)
|
482 |
+
00029/0399 7 (256,448,3)
|
483 |
+
00029/0404 7 (256,448,3)
|
484 |
+
00029/0412 7 (256,448,3)
|
485 |
+
00029/0416 7 (256,448,3)
|
486 |
+
00029/0418 7 (256,448,3)
|
487 |
+
00029/0428 7 (256,448,3)
|
488 |
+
00030/0131 7 (256,448,3)
|
489 |
+
00030/0135 7 (256,448,3)
|
490 |
+
00030/0150 7 (256,448,3)
|
491 |
+
00030/0245 7 (256,448,3)
|
492 |
+
00030/0339 7 (256,448,3)
|
493 |
+
00030/0472 7 (256,448,3)
|
494 |
+
00030/0482 7 (256,448,3)
|
495 |
+
00030/0500 7 (256,448,3)
|
496 |
+
00030/0501 7 (256,448,3)
|
497 |
+
00030/0697 7 (256,448,3)
|
498 |
+
00030/0707 7 (256,448,3)
|
499 |
+
00030/0733 7 (256,448,3)
|
500 |
+
00030/0743 7 (256,448,3)
|
501 |
+
00030/0747 7 (256,448,3)
|
502 |
+
00030/0754 7 (256,448,3)
|
503 |
+
00030/0755 7 (256,448,3)
|
504 |
+
00030/0759 7 (256,448,3)
|
505 |
+
00030/0762 7 (256,448,3)
|
506 |
+
00030/0764 7 (256,448,3)
|
507 |
+
00030/0767 7 (256,448,3)
|
508 |
+
00030/0794 7 (256,448,3)
|
509 |
+
00030/0796 7 (256,448,3)
|
510 |
+
00030/0799 7 (256,448,3)
|
511 |
+
00030/0814 7 (256,448,3)
|
512 |
+
00030/0823 7 (256,448,3)
|
513 |
+
00030/0829 7 (256,448,3)
|
514 |
+
00030/0833 7 (256,448,3)
|
515 |
+
00030/0848 7 (256,448,3)
|
516 |
+
00030/0853 7 (256,448,3)
|
517 |
+
00030/0861 7 (256,448,3)
|
518 |
+
00031/0182 7 (256,448,3)
|
519 |
+
00031/0275 7 (256,448,3)
|
520 |
+
00031/0279 7 (256,448,3)
|
521 |
+
00031/0555 7 (256,448,3)
|
522 |
+
00031/0648 7 (256,448,3)
|
523 |
+
00031/0663 7 (256,448,3)
|
524 |
+
00031/0680 7 (256,448,3)
|
525 |
+
00031/0880 7 (256,448,3)
|
526 |
+
00031/0922 7 (256,448,3)
|
527 |
+
00031/0925 7 (256,448,3)
|
528 |
+
00031/0928 7 (256,448,3)
|
529 |
+
00032/0025 7 (256,448,3)
|
530 |
+
00032/0377 7 (256,448,3)
|
531 |
+
00032/0378 7 (256,448,3)
|
532 |
+
00032/0382 7 (256,448,3)
|
533 |
+
00032/0384 7 (256,448,3)
|
534 |
+
00032/0386 7 (256,448,3)
|
535 |
+
00032/0389 7 (256,448,3)
|
536 |
+
00032/0391 7 (256,448,3)
|
537 |
+
00032/0393 7 (256,448,3)
|
538 |
+
00032/0492 7 (256,448,3)
|
539 |
+
00032/0497 7 (256,448,3)
|
540 |
+
00032/0505 7 (256,448,3)
|
541 |
+
00032/0523 7 (256,448,3)
|
542 |
+
00032/0542 7 (256,448,3)
|
543 |
+
00032/0544 7 (256,448,3)
|
544 |
+
00032/0712 7 (256,448,3)
|
545 |
+
00032/0847 7 (256,448,3)
|
546 |
+
00032/0850 7 (256,448,3)
|
547 |
+
00032/0875 7 (256,448,3)
|
548 |
+
00033/0062 7 (256,448,3)
|
549 |
+
00033/0063 7 (256,448,3)
|
550 |
+
00033/0098 7 (256,448,3)
|
551 |
+
00033/0101 7 (256,448,3)
|
552 |
+
00033/0105 7 (256,448,3)
|
553 |
+
00033/0114 7 (256,448,3)
|
554 |
+
00033/0432 7 (256,448,3)
|
555 |
+
00033/0441 7 (256,448,3)
|
556 |
+
00033/0606 7 (256,448,3)
|
557 |
+
00033/0611 7 (256,448,3)
|
558 |
+
00033/0634 7 (256,448,3)
|
559 |
+
00033/0787 7 (256,448,3)
|
560 |
+
00033/0792 7 (256,448,3)
|
561 |
+
00033/0802 7 (256,448,3)
|
562 |
+
00033/0825 7 (256,448,3)
|
563 |
+
00033/0835 7 (256,448,3)
|
564 |
+
00034/0249 7 (256,448,3)
|
565 |
+
00034/0253 7 (256,448,3)
|
566 |
+
00034/0254 7 (256,448,3)
|
567 |
+
00034/0282 7 (256,448,3)
|
568 |
+
00034/0318 7 (256,448,3)
|
569 |
+
00034/0319 7 (256,448,3)
|
570 |
+
00034/0323 7 (256,448,3)
|
571 |
+
00034/0336 7 (256,448,3)
|
572 |
+
00034/0348 7 (256,448,3)
|
573 |
+
00034/0356 7 (256,448,3)
|
574 |
+
00034/0379 7 (256,448,3)
|
575 |
+
00034/0387 7 (256,448,3)
|
576 |
+
00034/0575 7 (256,448,3)
|
577 |
+
00034/0608 7 (256,448,3)
|
578 |
+
00034/0663 7 (256,448,3)
|
579 |
+
00034/0811 7 (256,448,3)
|
580 |
+
00034/0812 7 (256,448,3)
|
581 |
+
00034/0946 7 (256,448,3)
|
582 |
+
00034/0948 7 (256,448,3)
|
583 |
+
00034/0950 7 (256,448,3)
|
584 |
+
00035/0204 7 (256,448,3)
|
585 |
+
00035/0243 7 (256,448,3)
|
586 |
+
00035/0308 7 (256,448,3)
|
587 |
+
00035/0465 7 (256,448,3)
|
588 |
+
00035/0478 7 (256,448,3)
|
589 |
+
00035/0523 7 (256,448,3)
|
590 |
+
00035/0540 7 (256,448,3)
|
591 |
+
00035/0544 7 (256,448,3)
|
592 |
+
00035/0556 7 (256,448,3)
|
593 |
+
00035/0568 7 (256,448,3)
|
594 |
+
00035/0570 7 (256,448,3)
|
595 |
+
00035/0609 7 (256,448,3)
|
596 |
+
00035/0643 7 (256,448,3)
|
597 |
+
00035/0644 7 (256,448,3)
|
598 |
+
00035/0645 7 (256,448,3)
|
599 |
+
00035/0646 7 (256,448,3)
|
600 |
+
00035/0650 7 (256,448,3)
|
601 |
+
00035/0661 7 (256,448,3)
|
602 |
+
00035/0724 7 (256,448,3)
|
603 |
+
00035/0725 7 (256,448,3)
|
604 |
+
00035/0850 7 (256,448,3)
|
605 |
+
00035/0863 7 (256,448,3)
|
606 |
+
00035/0870 7 (256,448,3)
|
607 |
+
00035/0951 7 (256,448,3)
|
608 |
+
00036/0038 7 (256,448,3)
|
609 |
+
00036/0062 7 (256,448,3)
|
610 |
+
00036/0423 7 (256,448,3)
|
611 |
+
00036/0737 7 (256,448,3)
|
612 |
+
00036/0750 7 (256,448,3)
|
613 |
+
00036/0751 7 (256,448,3)
|
614 |
+
00036/0754 7 (256,448,3)
|
615 |
+
00036/0929 7 (256,448,3)
|
616 |
+
00037/0085 7 (256,448,3)
|
617 |
+
00037/0113 7 (256,448,3)
|
618 |
+
00037/0130 7 (256,448,3)
|
619 |
+
00037/0153 7 (256,448,3)
|
620 |
+
00037/0169 7 (256,448,3)
|
621 |
+
00037/0263 7 (256,448,3)
|
622 |
+
00037/0272 7 (256,448,3)
|
623 |
+
00037/0273 7 (256,448,3)
|
624 |
+
00037/0275 7 (256,448,3)
|
625 |
+
00037/0280 7 (256,448,3)
|
626 |
+
00037/0399 7 (256,448,3)
|
627 |
+
00037/0456 7 (256,448,3)
|
628 |
+
00037/0853 7 (256,448,3)
|
629 |
+
00037/0855 7 (256,448,3)
|
630 |
+
00037/0856 7 (256,448,3)
|
631 |
+
00037/0857 7 (256,448,3)
|
632 |
+
00037/0925 7 (256,448,3)
|
633 |
+
00037/0947 7 (256,448,3)
|
634 |
+
00038/0148 7 (256,448,3)
|
635 |
+
00038/0533 7 (256,448,3)
|
636 |
+
00038/0534 7 (256,448,3)
|
637 |
+
00038/0560 7 (256,448,3)
|
638 |
+
00038/0562 7 (256,448,3)
|
639 |
+
00038/0566 7 (256,448,3)
|
640 |
+
00038/0578 7 (256,448,3)
|
641 |
+
00038/0652 7 (256,448,3)
|
642 |
+
00038/0674 7 (256,448,3)
|
643 |
+
00038/0685 7 (256,448,3)
|
644 |
+
00038/0686 7 (256,448,3)
|
645 |
+
00038/0692 7 (256,448,3)
|
646 |
+
00038/0736 7 (256,448,3)
|
647 |
+
00039/0035 7 (256,448,3)
|
648 |
+
00039/0105 7 (256,448,3)
|
649 |
+
00039/0109 7 (256,448,3)
|
650 |
+
00039/0121 7 (256,448,3)
|
651 |
+
00039/0128 7 (256,448,3)
|
652 |
+
00039/0129 7 (256,448,3)
|
653 |
+
00039/0132 7 (256,448,3)
|
654 |
+
00039/0137 7 (256,448,3)
|
655 |
+
00039/0157 7 (256,448,3)
|
656 |
+
00039/0496 7 (256,448,3)
|
657 |
+
00039/0502 7 (256,448,3)
|
658 |
+
00039/0526 7 (256,448,3)
|
659 |
+
00039/0529 7 (256,448,3)
|
660 |
+
00039/0682 7 (256,448,3)
|
661 |
+
00039/0690 7 (256,448,3)
|
662 |
+
00039/0693 7 (256,448,3)
|
663 |
+
00039/0703 7 (256,448,3)
|
664 |
+
00039/0725 7 (256,448,3)
|
665 |
+
00039/0734 7 (256,448,3)
|
666 |
+
00040/0518 7 (256,448,3)
|
667 |
+
00040/0728 7 (256,448,3)
|
668 |
+
00040/0774 7 (256,448,3)
|
669 |
+
00040/0812 7 (256,448,3)
|
670 |
+
00040/0818 7 (256,448,3)
|
671 |
+
00040/0827 7 (256,448,3)
|
672 |
+
00040/0914 7 (256,448,3)
|
673 |
+
00040/0917 7 (256,448,3)
|
674 |
+
00040/0918 7 (256,448,3)
|
675 |
+
00040/0924 7 (256,448,3)
|
676 |
+
00040/0925 7 (256,448,3)
|
677 |
+
00041/0004 7 (256,448,3)
|
678 |
+
00041/0006 7 (256,448,3)
|
679 |
+
00041/0013 7 (256,448,3)
|
680 |
+
00041/0059 7 (256,448,3)
|
681 |
+
00041/0110 7 (256,448,3)
|
682 |
+
00041/0291 7 (256,448,3)
|
683 |
+
00041/0366 7 (256,448,3)
|
684 |
+
00041/0388 7 (256,448,3)
|
685 |
+
00041/0434 7 (256,448,3)
|
686 |
+
00041/0436 7 (256,448,3)
|
687 |
+
00041/0450 7 (256,448,3)
|
688 |
+
00041/0457 7 (256,448,3)
|
689 |
+
00041/0460 7 (256,448,3)
|
690 |
+
00041/0468 7 (256,448,3)
|
691 |
+
00041/0471 7 (256,448,3)
|
692 |
+
00041/0474 7 (256,448,3)
|
693 |
+
00041/0809 7 (256,448,3)
|
694 |
+
00041/0844 7 (256,448,3)
|
695 |
+
00041/0858 7 (256,448,3)
|
696 |
+
00041/0874 7 (256,448,3)
|
697 |
+
00041/0876 7 (256,448,3)
|
698 |
+
00042/0020 7 (256,448,3)
|
699 |
+
00042/0205 7 (256,448,3)
|
700 |
+
00042/0206 7 (256,448,3)
|
701 |
+
00042/0432 7 (256,448,3)
|
702 |
+
00042/0563 7 (256,448,3)
|
703 |
+
00042/0569 7 (256,448,3)
|
704 |
+
00042/0575 7 (256,448,3)
|
705 |
+
00042/0576 7 (256,448,3)
|
706 |
+
00042/0888 7 (256,448,3)
|
707 |
+
00042/0892 7 (256,448,3)
|
708 |
+
00042/0943 7 (256,448,3)
|
709 |
+
00042/0944 7 (256,448,3)
|
710 |
+
00043/0126 7 (256,448,3)
|
711 |
+
00043/0130 7 (256,448,3)
|
712 |
+
00043/0136 7 (256,448,3)
|
713 |
+
00043/0233 7 (256,448,3)
|
714 |
+
00043/0235 7 (256,448,3)
|
715 |
+
00043/0237 7 (256,448,3)
|
716 |
+
00043/0277 7 (256,448,3)
|
717 |
+
00043/0301 7 (256,448,3)
|
718 |
+
00043/0302 7 (256,448,3)
|
719 |
+
00043/0303 7 (256,448,3)
|
720 |
+
00043/0308 7 (256,448,3)
|
721 |
+
00043/0309 7 (256,448,3)
|
722 |
+
00043/0314 7 (256,448,3)
|
723 |
+
00043/0713 7 (256,448,3)
|
724 |
+
00043/0715 7 (256,448,3)
|
725 |
+
00043/0923 7 (256,448,3)
|
726 |
+
00044/0095 7 (256,448,3)
|
727 |
+
00044/0255 7 (256,448,3)
|
728 |
+
00044/0864 7 (256,448,3)
|
729 |
+
00044/0892 7 (256,448,3)
|
730 |
+
00044/0898 7 (256,448,3)
|
731 |
+
00044/0993 7 (256,448,3)
|
732 |
+
00044/0995 7 (256,448,3)
|
733 |
+
00044/0997 7 (256,448,3)
|
734 |
+
00045/0001 7 (256,448,3)
|
735 |
+
00045/0006 7 (256,448,3)
|
736 |
+
00045/0269 7 (256,448,3)
|
737 |
+
00045/0276 7 (256,448,3)
|
738 |
+
00045/0280 7 (256,448,3)
|
739 |
+
00045/0281 7 (256,448,3)
|
740 |
+
00045/0282 7 (256,448,3)
|
741 |
+
00045/0284 7 (256,448,3)
|
742 |
+
00045/0550 7 (256,448,3)
|
743 |
+
00045/0571 7 (256,448,3)
|
744 |
+
00045/0629 7 (256,448,3)
|
745 |
+
00045/0631 7 (256,448,3)
|
746 |
+
00045/0659 7 (256,448,3)
|
747 |
+
00045/0693 7 (256,448,3)
|
748 |
+
00045/0807 7 (256,448,3)
|
749 |
+
00045/0810 7 (256,448,3)
|
750 |
+
00045/0826 7 (256,448,3)
|
751 |
+
00045/0849 7 (256,448,3)
|
752 |
+
00045/0946 7 (256,448,3)
|
753 |
+
00045/0987 7 (256,448,3)
|
754 |
+
00045/0990 7 (256,448,3)
|
755 |
+
00046/0104 7 (256,448,3)
|
756 |
+
00046/0477 7 (256,448,3)
|
757 |
+
00046/0490 7 (256,448,3)
|
758 |
+
00046/0491 7 (256,448,3)
|
759 |
+
00046/0509 7 (256,448,3)
|
760 |
+
00046/0513 7 (256,448,3)
|
761 |
+
00046/0603 7 (256,448,3)
|
762 |
+
00046/0723 7 (256,448,3)
|
763 |
+
00046/0744 7 (256,448,3)
|
764 |
+
00046/0746 7 (256,448,3)
|
765 |
+
00046/0750 7 (256,448,3)
|
766 |
+
00046/0852 7 (256,448,3)
|
767 |
+
00046/0927 7 (256,448,3)
|
768 |
+
00046/0928 7 (256,448,3)
|
769 |
+
00046/0929 7 (256,448,3)
|
770 |
+
00046/0931 7 (256,448,3)
|
771 |
+
00046/0936 7 (256,448,3)
|
772 |
+
00046/0939 7 (256,448,3)
|
773 |
+
00046/0947 7 (256,448,3)
|
774 |
+
00046/0948 7 (256,448,3)
|
775 |
+
00046/0950 7 (256,448,3)
|
776 |
+
00046/0955 7 (256,448,3)
|
777 |
+
00046/0961 7 (256,448,3)
|
778 |
+
00047/0023 7 (256,448,3)
|
779 |
+
00047/0029 7 (256,448,3)
|
780 |
+
00047/0035 7 (256,448,3)
|
781 |
+
00047/0058 7 (256,448,3)
|
782 |
+
00047/0061 7 (256,448,3)
|
783 |
+
00047/0065 7 (256,448,3)
|
784 |
+
00047/0068 7 (256,448,3)
|
785 |
+
00047/0072 7 (256,448,3)
|
786 |
+
00047/0074 7 (256,448,3)
|
787 |
+
00047/0148 7 (256,448,3)
|
788 |
+
00047/0594 7 (256,448,3)
|
789 |
+
00047/0782 7 (256,448,3)
|
790 |
+
00047/0787 7 (256,448,3)
|
791 |
+
00047/0860 7 (256,448,3)
|
792 |
+
00047/0889 7 (256,448,3)
|
793 |
+
00047/0893 7 (256,448,3)
|
794 |
+
00047/0894 7 (256,448,3)
|
795 |
+
00047/0902 7 (256,448,3)
|
796 |
+
00047/0975 7 (256,448,3)
|
797 |
+
00047/0995 7 (256,448,3)
|
798 |
+
00048/0033 7 (256,448,3)
|
799 |
+
00048/0113 7 (256,448,3)
|
800 |
+
00048/0115 7 (256,448,3)
|
801 |
+
00048/0120 7 (256,448,3)
|
802 |
+
00048/0129 7 (256,448,3)
|
803 |
+
00048/0136 7 (256,448,3)
|
804 |
+
00048/0327 7 (256,448,3)
|
805 |
+
00048/0329 7 (256,448,3)
|
806 |
+
00048/0341 7 (256,448,3)
|
807 |
+
00048/0343 7 (256,448,3)
|
808 |
+
00048/0345 7 (256,448,3)
|
809 |
+
00048/0346 7 (256,448,3)
|
810 |
+
00048/0355 7 (256,448,3)
|
811 |
+
00048/0359 7 (256,448,3)
|
812 |
+
00048/0363 7 (256,448,3)
|
813 |
+
00048/0378 7 (256,448,3)
|
814 |
+
00048/0386 7 (256,448,3)
|
815 |
+
00048/0387 7 (256,448,3)
|
816 |
+
00048/0388 7 (256,448,3)
|
817 |
+
00048/0428 7 (256,448,3)
|
818 |
+
00048/0439 7 (256,448,3)
|
819 |
+
00048/0507 7 (256,448,3)
|
820 |
+
00048/0510 7 (256,448,3)
|
821 |
+
00048/0512 7 (256,448,3)
|
822 |
+
00048/0514 7 (256,448,3)
|
823 |
+
00048/0539 7 (256,448,3)
|
824 |
+
00048/0542 7 (256,448,3)
|
825 |
+
00048/0544 7 (256,448,3)
|
826 |
+
00048/0631 7 (256,448,3)
|
827 |
+
00048/0632 7 (256,448,3)
|
828 |
+
00048/0636 7 (256,448,3)
|
829 |
+
00048/0640 7 (256,448,3)
|
830 |
+
00048/0644 7 (256,448,3)
|
831 |
+
00048/0653 7 (256,448,3)
|
832 |
+
00048/0655 7 (256,448,3)
|
833 |
+
00048/0658 7 (256,448,3)
|
834 |
+
00048/0667 7 (256,448,3)
|
835 |
+
00048/0688 7 (256,448,3)
|
836 |
+
00048/0708 7 (256,448,3)
|
837 |
+
00049/0005 7 (256,448,3)
|
838 |
+
00049/0074 7 (256,448,3)
|
839 |
+
00049/0077 7 (256,448,3)
|
840 |
+
00049/0084 7 (256,448,3)
|
841 |
+
00049/0516 7 (256,448,3)
|
842 |
+
00049/0800 7 (256,448,3)
|
843 |
+
00049/0900 7 (256,448,3)
|
844 |
+
00050/0607 7 (256,448,3)
|
845 |
+
00050/0661 7 (256,448,3)
|
846 |
+
00050/0665 7 (256,448,3)
|
847 |
+
00050/0685 7 (256,448,3)
|
848 |
+
00050/0711 7 (256,448,3)
|
849 |
+
00051/0068 7 (256,448,3)
|
850 |
+
00051/0069 7 (256,448,3)
|
851 |
+
00051/0076 7 (256,448,3)
|
852 |
+
00051/0569 7 (256,448,3)
|
853 |
+
00051/0801 7 (256,448,3)
|
854 |
+
00051/0927 7 (256,448,3)
|
855 |
+
00051/0945 7 (256,448,3)
|
856 |
+
00051/0952 7 (256,448,3)
|
857 |
+
00051/0976 7 (256,448,3)
|
858 |
+
00051/0985 7 (256,448,3)
|
859 |
+
00052/0012 7 (256,448,3)
|
860 |
+
00052/0015 7 (256,448,3)
|
861 |
+
00052/0052 7 (256,448,3)
|
862 |
+
00052/0056 7 (256,448,3)
|
863 |
+
00052/0060 7 (256,448,3)
|
864 |
+
00052/0157 7 (256,448,3)
|
865 |
+
00052/0265 7 (256,448,3)
|
866 |
+
00052/0788 7 (256,448,3)
|
867 |
+
00052/0790 7 (256,448,3)
|
868 |
+
00052/0793 7 (256,448,3)
|
869 |
+
00052/0816 7 (256,448,3)
|
870 |
+
00052/0824 7 (256,448,3)
|
871 |
+
00052/0918 7 (256,448,3)
|
872 |
+
00052/0933 7 (256,448,3)
|
873 |
+
00052/0947 7 (256,448,3)
|
874 |
+
00053/0232 7 (256,448,3)
|
875 |
+
00053/0277 7 (256,448,3)
|
876 |
+
00053/0362 7 (256,448,3)
|
877 |
+
00053/0577 7 (256,448,3)
|
878 |
+
00053/0609 7 (256,448,3)
|
879 |
+
00053/0612 7 (256,448,3)
|
880 |
+
00053/0628 7 (256,448,3)
|
881 |
+
00053/0629 7 (256,448,3)
|
882 |
+
00053/0633 7 (256,448,3)
|
883 |
+
00053/0659 7 (256,448,3)
|
884 |
+
00053/0667 7 (256,448,3)
|
885 |
+
00053/0671 7 (256,448,3)
|
886 |
+
00053/0797 7 (256,448,3)
|
887 |
+
00053/0804 7 (256,448,3)
|
888 |
+
00053/0807 7 (256,448,3)
|
889 |
+
00053/0952 7 (256,448,3)
|
890 |
+
00053/0970 7 (256,448,3)
|
891 |
+
00053/0981 7 (256,448,3)
|
892 |
+
00053/0999 7 (256,448,3)
|
893 |
+
00054/0003 7 (256,448,3)
|
894 |
+
00054/0013 7 (256,448,3)
|
895 |
+
00054/0020 7 (256,448,3)
|
896 |
+
00054/0022 7 (256,448,3)
|
897 |
+
00054/0023 7 (256,448,3)
|
898 |
+
00054/0044 7 (256,448,3)
|
899 |
+
00054/0051 7 (256,448,3)
|
900 |
+
00054/0063 7 (256,448,3)
|
901 |
+
00054/0065 7 (256,448,3)
|
902 |
+
00054/0145 7 (256,448,3)
|
903 |
+
00054/0153 7 (256,448,3)
|
904 |
+
00054/0203 7 (256,448,3)
|
905 |
+
00054/0325 7 (256,448,3)
|
906 |
+
00054/0445 7 (256,448,3)
|
907 |
+
00054/0448 7 (256,448,3)
|
908 |
+
00054/0456 7 (256,448,3)
|
909 |
+
00054/0457 7 (256,448,3)
|
910 |
+
00054/0519 7 (256,448,3)
|
911 |
+
00054/0524 7 (256,448,3)
|
912 |
+
00054/0530 7 (256,448,3)
|
913 |
+
00054/0532 7 (256,448,3)
|
914 |
+
00054/0535 7 (256,448,3)
|
915 |
+
00054/0574 7 (256,448,3)
|
916 |
+
00054/0760 7 (256,448,3)
|
917 |
+
00054/0767 7 (256,448,3)
|
918 |
+
00054/0837 7 (256,448,3)
|
919 |
+
00055/0011 7 (256,448,3)
|
920 |
+
00055/0109 7 (256,448,3)
|
921 |
+
00055/0111 7 (256,448,3)
|
922 |
+
00055/0117 7 (256,448,3)
|
923 |
+
00055/0119 7 (256,448,3)
|
924 |
+
00055/0182 7 (256,448,3)
|
925 |
+
00055/0192 7 (256,448,3)
|
926 |
+
00055/0193 7 (256,448,3)
|
927 |
+
00055/0200 7 (256,448,3)
|
928 |
+
00055/0204 7 (256,448,3)
|
929 |
+
00055/0207 7 (256,448,3)
|
930 |
+
00055/0212 7 (256,448,3)
|
931 |
+
00055/0213 7 (256,448,3)
|
932 |
+
00055/0348 7 (256,448,3)
|
933 |
+
00055/0423 7 (256,448,3)
|
934 |
+
00055/0427 7 (256,448,3)
|
935 |
+
00055/0456 7 (256,448,3)
|
936 |
+
00055/0489 7 (256,448,3)
|
937 |
+
00055/0689 7 (256,448,3)
|
938 |
+
00055/0753 7 (256,448,3)
|
939 |
+
00055/0802 7 (256,448,3)
|
940 |
+
00055/0844 7 (256,448,3)
|
941 |
+
00055/0850 7 (256,448,3)
|
942 |
+
00055/0982 7 (256,448,3)
|
943 |
+
00055/0993 7 (256,448,3)
|
944 |
+
00056/0113 7 (256,448,3)
|
945 |
+
00056/0148 7 (256,448,3)
|
946 |
+
00056/0151 7 (256,448,3)
|
947 |
+
00056/0316 7 (256,448,3)
|
948 |
+
00056/0379 7 (256,448,3)
|
949 |
+
00056/0380 7 (256,448,3)
|
950 |
+
00056/0385 7 (256,448,3)
|
951 |
+
00056/0505 7 (256,448,3)
|
952 |
+
00056/0579 7 (256,448,3)
|
953 |
+
00057/0254 7 (256,448,3)
|
954 |
+
00057/0264 7 (256,448,3)
|
955 |
+
00057/0272 7 (256,448,3)
|
956 |
+
00057/0403 7 (256,448,3)
|
957 |
+
00057/0501 7 (256,448,3)
|
958 |
+
00057/0503 7 (256,448,3)
|
959 |
+
00057/0884 7 (256,448,3)
|
960 |
+
00058/0026 7 (256,448,3)
|
961 |
+
00058/0029 7 (256,448,3)
|
962 |
+
00058/0104 7 (256,448,3)
|
963 |
+
00058/0124 7 (256,448,3)
|
964 |
+
00058/0162 7 (256,448,3)
|
965 |
+
00058/0288 7 (256,448,3)
|
966 |
+
00058/0289 7 (256,448,3)
|
967 |
+
00058/0323 7 (256,448,3)
|
968 |
+
00058/0328 7 (256,448,3)
|
969 |
+
00058/0329 7 (256,448,3)
|
970 |
+
00058/0337 7 (256,448,3)
|
971 |
+
00058/0367 7 (256,448,3)
|
972 |
+
00058/0383 7 (256,448,3)
|
973 |
+
00058/0395 7 (256,448,3)
|
974 |
+
00060/0178 7 (256,448,3)
|
975 |
+
00060/0182 7 (256,448,3)
|
976 |
+
00061/0001 7 (256,448,3)
|
977 |
+
00061/0003 7 (256,448,3)
|
978 |
+
00061/0006 7 (256,448,3)
|
979 |
+
00061/0443 7 (256,448,3)
|
980 |
+
00061/0586 7 (256,448,3)
|
981 |
+
00061/0587 7 (256,448,3)
|
982 |
+
00061/0774 7 (256,448,3)
|
983 |
+
00061/0789 7 (256,448,3)
|
984 |
+
00061/0815 7 (256,448,3)
|
985 |
+
00061/0817 7 (256,448,3)
|
986 |
+
00061/0826 7 (256,448,3)
|
987 |
+
00061/0829 7 (256,448,3)
|
988 |
+
00061/0830 7 (256,448,3)
|
989 |
+
00061/0832 7 (256,448,3)
|
990 |
+
00061/0833 7 (256,448,3)
|
991 |
+
00061/0836 7 (256,448,3)
|
992 |
+
00061/0837 7 (256,448,3)
|
993 |
+
00061/0839 7 (256,448,3)
|
994 |
+
00061/0843 7 (256,448,3)
|
995 |
+
00061/0849 7 (256,448,3)
|
996 |
+
00061/0859 7 (256,448,3)
|
997 |
+
00061/0861 7 (256,448,3)
|
998 |
+
00061/0868 7 (256,448,3)
|
999 |
+
00061/0877 7 (256,448,3)
|
1000 |
+
00061/0889 7 (256,448,3)
|
1001 |
+
00061/0905 7 (256,448,3)
|
1002 |
+
00062/0115 7 (256,448,3)
|
1003 |
+
00062/0118 7 (256,448,3)
|
1004 |
+
00062/0125 7 (256,448,3)
|
1005 |
+
00062/0134 7 (256,448,3)
|
1006 |
+
00062/0142 7 (256,448,3)
|
1007 |
+
00062/0400 7 (256,448,3)
|
1008 |
+
00062/0457 7 (256,448,3)
|
1009 |
+
00062/0459 7 (256,448,3)
|
1010 |
+
00062/0560 7 (256,448,3)
|
1011 |
+
00062/0650 7 (256,448,3)
|
1012 |
+
00062/0655 7 (256,448,3)
|
1013 |
+
00062/0715 7 (256,448,3)
|
1014 |
+
00062/0847 7 (256,448,3)
|
1015 |
+
00062/0905 7 (256,448,3)
|
1016 |
+
00062/0981 7 (256,448,3)
|
1017 |
+
00063/0177 7 (256,448,3)
|
1018 |
+
00063/0230 7 (256,448,3)
|
1019 |
+
00063/0253 7 (256,448,3)
|
1020 |
+
00063/0257 7 (256,448,3)
|
1021 |
+
00063/0326 7 (256,448,3)
|
1022 |
+
00063/0530 7 (256,448,3)
|
1023 |
+
00063/0677 7 (256,448,3)
|
1024 |
+
00063/0759 7 (256,448,3)
|
1025 |
+
00063/0761 7 (256,448,3)
|
1026 |
+
00063/0777 7 (256,448,3)
|
1027 |
+
00063/0842 7 (256,448,3)
|
1028 |
+
00063/0900 7 (256,448,3)
|
1029 |
+
00064/0014 7 (256,448,3)
|
1030 |
+
00064/0028 7 (256,448,3)
|
1031 |
+
00064/0029 7 (256,448,3)
|
1032 |
+
00064/0030 7 (256,448,3)
|
1033 |
+
00064/0037 7 (256,448,3)
|
1034 |
+
00064/0044 7 (256,448,3)
|
1035 |
+
00064/0280 7 (256,448,3)
|
1036 |
+
00064/0285 7 (256,448,3)
|
1037 |
+
00064/0286 7 (256,448,3)
|
1038 |
+
00064/0291 7 (256,448,3)
|
1039 |
+
00064/0300 7 (256,448,3)
|
1040 |
+
00064/0303 7 (256,448,3)
|
1041 |
+
00064/0308 7 (256,448,3)
|
1042 |
+
00064/0314 7 (256,448,3)
|
1043 |
+
00064/0316 7 (256,448,3)
|
1044 |
+
00064/0317 7 (256,448,3)
|
1045 |
+
00064/0323 7 (256,448,3)
|
1046 |
+
00064/0435 7 (256,448,3)
|
1047 |
+
00064/0733 7 (256,448,3)
|
1048 |
+
00064/0848 7 (256,448,3)
|
1049 |
+
00064/0868 7 (256,448,3)
|
1050 |
+
00064/0888 7 (256,448,3)
|
1051 |
+
00064/0898 7 (256,448,3)
|
1052 |
+
00065/0116 7 (256,448,3)
|
1053 |
+
00065/0121 7 (256,448,3)
|
1054 |
+
00065/0122 7 (256,448,3)
|
1055 |
+
00065/0124 7 (256,448,3)
|
1056 |
+
00065/0125 7 (256,448,3)
|
1057 |
+
00065/0126 7 (256,448,3)
|
1058 |
+
00065/0136 7 (256,448,3)
|
1059 |
+
00065/0146 7 (256,448,3)
|
1060 |
+
00065/0147 7 (256,448,3)
|
1061 |
+
00065/0163 7 (256,448,3)
|
1062 |
+
00065/0170 7 (256,448,3)
|
1063 |
+
00065/0175 7 (256,448,3)
|
1064 |
+
00065/0176 7 (256,448,3)
|
1065 |
+
00065/0180 7 (256,448,3)
|
1066 |
+
00065/0184 7 (256,448,3)
|
1067 |
+
00065/0186 7 (256,448,3)
|
1068 |
+
00065/0332 7 (256,448,3)
|
1069 |
+
00065/0343 7 (256,448,3)
|
1070 |
+
00065/0365 7 (256,448,3)
|
1071 |
+
00065/0393 7 (256,448,3)
|
1072 |
+
00065/0394 7 (256,448,3)
|
1073 |
+
00065/0442 7 (256,448,3)
|
1074 |
+
00065/0459 7 (256,448,3)
|
1075 |
+
00065/0462 7 (256,448,3)
|
1076 |
+
00065/0476 7 (256,448,3)
|
1077 |
+
00065/0483 7 (256,448,3)
|
1078 |
+
00065/0590 7 (256,448,3)
|
1079 |
+
00065/0593 7 (256,448,3)
|
1080 |
+
00065/0595 7 (256,448,3)
|
1081 |
+
00065/0774 7 (256,448,3)
|
1082 |
+
00065/0947 7 (256,448,3)
|
1083 |
+
00065/0985 7 (256,448,3)
|
1084 |
+
00065/0986 7 (256,448,3)
|
1085 |
+
00066/0015 7 (256,448,3)
|
1086 |
+
00066/0043 7 (256,448,3)
|
1087 |
+
00066/0131 7 (256,448,3)
|
1088 |
+
00066/0157 7 (256,448,3)
|
1089 |
+
00066/0169 7 (256,448,3)
|
1090 |
+
00066/0374 7 (256,448,3)
|
1091 |
+
00066/0382 7 (256,448,3)
|
1092 |
+
00066/0481 7 (256,448,3)
|
1093 |
+
00066/0482 7 (256,448,3)
|
1094 |
+
00066/0491 7 (256,448,3)
|
1095 |
+
00066/0493 7 (256,448,3)
|
1096 |
+
00066/0494 7 (256,448,3)
|
1097 |
+
00066/0496 7 (256,448,3)
|
1098 |
+
00066/0680 7 (256,448,3)
|
1099 |
+
00066/0700 7 (256,448,3)
|
1100 |
+
00066/0887 7 (256,448,3)
|
1101 |
+
00066/0910 7 (256,448,3)
|
1102 |
+
00066/0918 7 (256,448,3)
|
1103 |
+
00067/0024 7 (256,448,3)
|
1104 |
+
00067/0059 7 (256,448,3)
|
1105 |
+
00067/0408 7 (256,448,3)
|
1106 |
+
00067/0414 7 (256,448,3)
|
1107 |
+
00067/0417 7 (256,448,3)
|
1108 |
+
00067/0419 7 (256,448,3)
|
1109 |
+
00067/0423 7 (256,448,3)
|
1110 |
+
00067/0441 7 (256,448,3)
|
1111 |
+
00067/0467 7 (256,448,3)
|
1112 |
+
00067/0471 7 (256,448,3)
|
1113 |
+
00067/0487 7 (256,448,3)
|
1114 |
+
00067/0494 7 (256,448,3)
|
1115 |
+
00067/0497 7 (256,448,3)
|
1116 |
+
00067/0513 7 (256,448,3)
|
1117 |
+
00067/0521 7 (256,448,3)
|
1118 |
+
00068/0111 7 (256,448,3)
|
1119 |
+
00068/0123 7 (256,448,3)
|
1120 |
+
00068/0126 7 (256,448,3)
|
1121 |
+
00068/0129 7 (256,448,3)
|
1122 |
+
00068/0270 7 (256,448,3)
|
1123 |
+
00068/0330 7 (256,448,3)
|
1124 |
+
00068/0407 7 (256,448,3)
|
1125 |
+
00068/0428 7 (256,448,3)
|
1126 |
+
00068/0544 7 (256,448,3)
|
1127 |
+
00068/0635 7 (256,448,3)
|
1128 |
+
00068/0637 7 (256,448,3)
|
1129 |
+
00068/0736 7 (256,448,3)
|
1130 |
+
00068/0738 7 (256,448,3)
|
1131 |
+
00068/0747 7 (256,448,3)
|
1132 |
+
00068/0748 7 (256,448,3)
|
1133 |
+
00068/0749 7 (256,448,3)
|
1134 |
+
00068/0762 7 (256,448,3)
|
1135 |
+
00068/0815 7 (256,448,3)
|
1136 |
+
00068/0981 7 (256,448,3)
|
1137 |
+
00068/0982 7 (256,448,3)
|
1138 |
+
00069/0187 7 (256,448,3)
|
1139 |
+
00069/0191 7 (256,448,3)
|
1140 |
+
00070/0001 7 (256,448,3)
|
1141 |
+
00070/0003 7 (256,448,3)
|
1142 |
+
00070/0340 7 (256,448,3)
|
1143 |
+
00070/0341 7 (256,448,3)
|
1144 |
+
00070/0342 7 (256,448,3)
|
1145 |
+
00070/0347 7 (256,448,3)
|
1146 |
+
00070/0372 7 (256,448,3)
|
1147 |
+
00070/0383 7 (256,448,3)
|
1148 |
+
00070/0389 7 (256,448,3)
|
1149 |
+
00070/0728 7 (256,448,3)
|
1150 |
+
00070/0813 7 (256,448,3)
|
1151 |
+
00070/0814 7 (256,448,3)
|
1152 |
+
00070/0823 7 (256,448,3)
|
1153 |
+
00070/0840 7 (256,448,3)
|
1154 |
+
00070/0843 7 (256,448,3)
|
1155 |
+
00070/0861 7 (256,448,3)
|
1156 |
+
00071/0111 7 (256,448,3)
|
1157 |
+
00071/0138 7 (256,448,3)
|
1158 |
+
00071/0143 7 (256,448,3)
|
1159 |
+
00071/0150 7 (256,448,3)
|
1160 |
+
00071/0508 7 (256,448,3)
|
1161 |
+
00071/0514 7 (256,448,3)
|
1162 |
+
00071/0550 7 (256,448,3)
|
1163 |
+
00071/0556 7 (256,448,3)
|
1164 |
+
00071/0600 7 (256,448,3)
|
1165 |
+
00071/0665 7 (256,448,3)
|
1166 |
+
00071/0670 7 (256,448,3)
|
1167 |
+
00071/0672 7 (256,448,3)
|
1168 |
+
00071/0673 7 (256,448,3)
|
1169 |
+
00071/0705 7 (256,448,3)
|
1170 |
+
00071/0706 7 (256,448,3)
|
1171 |
+
00071/0707 7 (256,448,3)
|
1172 |
+
00071/0774 7 (256,448,3)
|
1173 |
+
00071/0799 7 (256,448,3)
|
1174 |
+
00071/0814 7 (256,448,3)
|
1175 |
+
00071/0816 7 (256,448,3)
|
1176 |
+
00071/0819 7 (256,448,3)
|
1177 |
+
00071/0823 7 (256,448,3)
|
1178 |
+
00071/0828 7 (256,448,3)
|
1179 |
+
00071/0830 7 (256,448,3)
|
1180 |
+
00071/0839 7 (256,448,3)
|
1181 |
+
00071/0841 7 (256,448,3)
|
1182 |
+
00072/0192 7 (256,448,3)
|
1183 |
+
00072/0194 7 (256,448,3)
|
1184 |
+
00072/0197 7 (256,448,3)
|
1185 |
+
00072/0199 7 (256,448,3)
|
1186 |
+
00072/0285 7 (256,448,3)
|
1187 |
+
00072/0586 7 (256,448,3)
|
1188 |
+
00072/0795 7 (256,448,3)
|
1189 |
+
00072/0811 7 (256,448,3)
|
1190 |
+
00072/0812 7 (256,448,3)
|
1191 |
+
00072/0824 7 (256,448,3)
|
1192 |
+
00072/0831 7 (256,448,3)
|
1193 |
+
00072/0835 7 (256,448,3)
|
1194 |
+
00072/0837 7 (256,448,3)
|
1195 |
+
00072/0841 7 (256,448,3)
|
1196 |
+
00072/0962 7 (256,448,3)
|
1197 |
+
00073/0296 7 (256,448,3)
|
1198 |
+
00073/0299 7 (256,448,3)
|
1199 |
+
00073/0300 7 (256,448,3)
|
1200 |
+
00073/0301 7 (256,448,3)
|
1201 |
+
00073/0427 7 (256,448,3)
|
1202 |
+
00073/0428 7 (256,448,3)
|
1203 |
+
00073/0494 7 (256,448,3)
|
1204 |
+
00073/0615 7 (256,448,3)
|
1205 |
+
00073/0620 7 (256,448,3)
|
1206 |
+
00073/0624 7 (256,448,3)
|
1207 |
+
00073/0979 7 (256,448,3)
|
1208 |
+
00074/0226 7 (256,448,3)
|
1209 |
+
00074/0250 7 (256,448,3)
|
1210 |
+
00074/0284 7 (256,448,3)
|
1211 |
+
00074/0503 7 (256,448,3)
|
1212 |
+
00074/0614 7 (256,448,3)
|
1213 |
+
00074/0629 7 (256,448,3)
|
1214 |
+
00074/0762 7 (256,448,3)
|
1215 |
+
00074/0765 7 (256,448,3)
|
1216 |
+
00074/0900 7 (256,448,3)
|
1217 |
+
00074/0908 7 (256,448,3)
|
1218 |
+
00075/0352 7 (256,448,3)
|
1219 |
+
00075/0360 7 (256,448,3)
|
1220 |
+
00075/0361 7 (256,448,3)
|
1221 |
+
00075/0365 7 (256,448,3)
|
1222 |
+
00075/0383 7 (256,448,3)
|
1223 |
+
00075/0384 7 (256,448,3)
|
1224 |
+
00075/0386 7 (256,448,3)
|
1225 |
+
00075/0407 7 (256,448,3)
|
1226 |
+
00075/0410 7 (256,448,3)
|
1227 |
+
00075/0412 7 (256,448,3)
|
1228 |
+
00075/0413 7 (256,448,3)
|
1229 |
+
00075/0459 7 (256,448,3)
|
1230 |
+
00075/0504 7 (256,448,3)
|
1231 |
+
00075/0515 7 (256,448,3)
|
1232 |
+
00075/0518 7 (256,448,3)
|
1233 |
+
00075/0567 7 (256,448,3)
|
1234 |
+
00075/0681 7 (256,448,3)
|
1235 |
+
00075/0693 7 (256,448,3)
|
1236 |
+
00075/0728 7 (256,448,3)
|
1237 |
+
00075/0731 7 (256,448,3)
|
1238 |
+
00075/0804 7 (256,448,3)
|
1239 |
+
00075/0974 7 (256,448,3)
|
1240 |
+
00075/0975 7 (256,448,3)
|
1241 |
+
00075/0983 7 (256,448,3)
|
1242 |
+
00075/0997 7 (256,448,3)
|
1243 |
+
00076/0006 7 (256,448,3)
|
1244 |
+
00076/0007 7 (256,448,3)
|
1245 |
+
00076/0011 7 (256,448,3)
|
1246 |
+
00076/0013 7 (256,448,3)
|
1247 |
+
00076/0014 7 (256,448,3)
|
1248 |
+
00076/0027 7 (256,448,3)
|
1249 |
+
00076/0029 7 (256,448,3)
|
1250 |
+
00076/0037 7 (256,448,3)
|
1251 |
+
00076/0041 7 (256,448,3)
|
1252 |
+
00076/0055 7 (256,448,3)
|
1253 |
+
00076/0071 7 (256,448,3)
|
1254 |
+
00076/0172 7 (256,448,3)
|
1255 |
+
00076/0275 7 (256,448,3)
|
1256 |
+
00076/0286 7 (256,448,3)
|
1257 |
+
00076/0467 7 (256,448,3)
|
1258 |
+
00076/0481 7 (256,448,3)
|
1259 |
+
00076/0527 7 (256,448,3)
|
1260 |
+
00076/0895 7 (256,448,3)
|
1261 |
+
00076/0896 7 (256,448,3)
|
1262 |
+
00076/0906 7 (256,448,3)
|
1263 |
+
00076/0924 7 (256,448,3)
|
1264 |
+
00076/0964 7 (256,448,3)
|
1265 |
+
00076/0984 7 (256,448,3)
|
1266 |
+
00077/0317 7 (256,448,3)
|
1267 |
+
00077/0322 7 (256,448,3)
|
1268 |
+
00077/0333 7 (256,448,3)
|
1269 |
+
00077/0334 7 (256,448,3)
|
1270 |
+
00077/0480 7 (256,448,3)
|
1271 |
+
00077/0488 7 (256,448,3)
|
1272 |
+
00077/0490 7 (256,448,3)
|
1273 |
+
00077/0582 7 (256,448,3)
|
1274 |
+
00077/0586 7 (256,448,3)
|
1275 |
+
00077/0969 7 (256,448,3)
|
1276 |
+
00078/0007 7 (256,448,3)
|
1277 |
+
00078/0011 7 (256,448,3)
|
1278 |
+
00078/0153 7 (256,448,3)
|
1279 |
+
00078/0289 7 (256,448,3)
|
1280 |
+
00078/0312 7 (256,448,3)
|
1281 |
+
00078/0492 7 (256,448,3)
|
1282 |
+
00078/0580 7 (256,448,3)
|
1283 |
+
00078/0595 7 (256,448,3)
|
1284 |
+
00078/0814 7 (256,448,3)
|
1285 |
+
00078/0950 7 (256,448,3)
|
1286 |
+
00078/0955 7 (256,448,3)
|
1287 |
+
00079/0060 7 (256,448,3)
|
1288 |
+
00079/0067 7 (256,448,3)
|
1289 |
+
00080/0216 7 (256,448,3)
|
1290 |
+
00080/0308 7 (256,448,3)
|
1291 |
+
00080/0504 7 (256,448,3)
|
1292 |
+
00080/0552 7 (256,448,3)
|
1293 |
+
00080/0576 7 (256,448,3)
|
1294 |
+
00080/0583 7 (256,448,3)
|
1295 |
+
00080/0837 7 (256,448,3)
|
1296 |
+
00080/0839 7 (256,448,3)
|
1297 |
+
00080/0871 7 (256,448,3)
|
1298 |
+
00080/0877 7 (256,448,3)
|
1299 |
+
00080/0880 7 (256,448,3)
|
1300 |
+
00080/0969 7 (256,448,3)
|
1301 |
+
00080/0973 7 (256,448,3)
|
1302 |
+
00080/0980 7 (256,448,3)
|
1303 |
+
00081/0202 7 (256,448,3)
|
1304 |
+
00081/0203 7 (256,448,3)
|
1305 |
+
00081/0210 7 (256,448,3)
|
1306 |
+
00081/0268 7 (256,448,3)
|
1307 |
+
00081/0281 7 (256,448,3)
|
1308 |
+
00081/0283 7 (256,448,3)
|
1309 |
+
00081/0317 7 (256,448,3)
|
1310 |
+
00081/0327 7 (256,448,3)
|
1311 |
+
00082/0018 7 (256,448,3)
|
1312 |
+
00082/0025 7 (256,448,3)
|
1313 |
+
00082/0089 7 (256,448,3)
|
1314 |
+
00082/0140 7 (256,448,3)
|
1315 |
+
00082/0442 7 (256,448,3)
|
1316 |
+
00082/0465 7 (256,448,3)
|
1317 |
+
00082/0473 7 (256,448,3)
|
1318 |
+
00082/0481 7 (256,448,3)
|
1319 |
+
00082/0492 7 (256,448,3)
|
1320 |
+
00082/0495 7 (256,448,3)
|
1321 |
+
00082/0497 7 (256,448,3)
|
1322 |
+
00082/0502 7 (256,448,3)
|
1323 |
+
00082/0504 7 (256,448,3)
|
1324 |
+
00082/0506 7 (256,448,3)
|
1325 |
+
00082/0507 7 (256,448,3)
|
1326 |
+
00082/0510 7 (256,448,3)
|
1327 |
+
00082/0519 7 (256,448,3)
|
1328 |
+
00082/0523 7 (256,448,3)
|
1329 |
+
00082/0588 7 (256,448,3)
|
1330 |
+
00082/0597 7 (256,448,3)
|
1331 |
+
00082/0632 7 (256,448,3)
|
1332 |
+
00082/0751 7 (256,448,3)
|
1333 |
+
00082/0767 7 (256,448,3)
|
1334 |
+
00082/0771 7 (256,448,3)
|
1335 |
+
00082/0790 7 (256,448,3)
|
1336 |
+
00082/0804 7 (256,448,3)
|
1337 |
+
00082/0823 7 (256,448,3)
|
1338 |
+
00083/0052 7 (256,448,3)
|
1339 |
+
00083/0056 7 (256,448,3)
|
1340 |
+
00083/0113 7 (256,448,3)
|
1341 |
+
00083/0114 7 (256,448,3)
|
1342 |
+
00083/0122 7 (256,448,3)
|
1343 |
+
00083/0137 7 (256,448,3)
|
1344 |
+
00083/0270 7 (256,448,3)
|
1345 |
+
00083/0295 7 (256,448,3)
|
1346 |
+
00083/0303 7 (256,448,3)
|
1347 |
+
00083/0308 7 (256,448,3)
|
1348 |
+
00083/0586 7 (256,448,3)
|
1349 |
+
00083/0592 7 (256,448,3)
|
1350 |
+
00083/0640 7 (256,448,3)
|
1351 |
+
00083/0648 7 (256,448,3)
|
1352 |
+
00083/0654 7 (256,448,3)
|
1353 |
+
00083/0662 7 (256,448,3)
|
1354 |
+
00083/0666 7 (256,448,3)
|
1355 |
+
00083/0668 7 (256,448,3)
|
1356 |
+
00083/0669 7 (256,448,3)
|
1357 |
+
00083/0675 7 (256,448,3)
|
1358 |
+
00083/0679 7 (256,448,3)
|
1359 |
+
00083/0681 7 (256,448,3)
|
1360 |
+
00083/0682 7 (256,448,3)
|
1361 |
+
00083/0694 7 (256,448,3)
|
1362 |
+
00083/0695 7 (256,448,3)
|
1363 |
+
00083/0697 7 (256,448,3)
|
1364 |
+
00083/0704 7 (256,448,3)
|
1365 |
+
00083/0713 7 (256,448,3)
|
1366 |
+
00083/0721 7 (256,448,3)
|
1367 |
+
00083/0855 7 (256,448,3)
|
1368 |
+
00084/0109 7 (256,448,3)
|
1369 |
+
00084/0113 7 (256,448,3)
|
1370 |
+
00084/0306 7 (256,448,3)
|
1371 |
+
00084/0442 7 (256,448,3)
|
1372 |
+
00084/0669 7 (256,448,3)
|
1373 |
+
00084/0679 7 (256,448,3)
|
1374 |
+
00084/0685 7 (256,448,3)
|
1375 |
+
00084/0691 7 (256,448,3)
|
1376 |
+
00084/0768 7 (256,448,3)
|
1377 |
+
00084/0817 7 (256,448,3)
|
1378 |
+
00085/0027 7 (256,448,3)
|
1379 |
+
00085/0035 7 (256,448,3)
|
1380 |
+
00085/0038 7 (256,448,3)
|
1381 |
+
00085/0223 7 (256,448,3)
|
1382 |
+
00085/0233 7 (256,448,3)
|
1383 |
+
00085/0281 7 (256,448,3)
|
1384 |
+
00085/0287 7 (256,448,3)
|
1385 |
+
00085/0313 7 (256,448,3)
|
1386 |
+
00085/0521 7 (256,448,3)
|
1387 |
+
00085/0848 7 (256,448,3)
|
1388 |
+
00085/0855 7 (256,448,3)
|
1389 |
+
00085/0865 7 (256,448,3)
|
1390 |
+
00085/0952 7 (256,448,3)
|
1391 |
+
00085/0964 7 (256,448,3)
|
1392 |
+
00085/0973 7 (256,448,3)
|
1393 |
+
00085/0986 7 (256,448,3)
|
1394 |
+
00085/0993 7 (256,448,3)
|
1395 |
+
00086/0070 7 (256,448,3)
|
1396 |
+
00086/0075 7 (256,448,3)
|
1397 |
+
00086/0094 7 (256,448,3)
|
1398 |
+
00086/0103 7 (256,448,3)
|
1399 |
+
00086/0112 7 (256,448,3)
|
1400 |
+
00086/0288 7 (256,448,3)
|
1401 |
+
00086/0576 7 (256,448,3)
|
1402 |
+
00086/0580 7 (256,448,3)
|
1403 |
+
00086/0584 7 (256,448,3)
|
1404 |
+
00086/0599 7 (256,448,3)
|
1405 |
+
00086/0600 7 (256,448,3)
|
1406 |
+
00086/0602 7 (256,448,3)
|
1407 |
+
00086/0612 7 (256,448,3)
|
1408 |
+
00086/0629 7 (256,448,3)
|
1409 |
+
00086/0655 7 (256,448,3)
|
1410 |
+
00086/0679 7 (256,448,3)
|
1411 |
+
00086/0694 7 (256,448,3)
|
1412 |
+
00086/0695 7 (256,448,3)
|
1413 |
+
00086/0701 7 (256,448,3)
|
1414 |
+
00086/0760 7 (256,448,3)
|
1415 |
+
00086/0786 7 (256,448,3)
|
1416 |
+
00086/0845 7 (256,448,3)
|
1417 |
+
00086/0868 7 (256,448,3)
|
1418 |
+
00086/0889 7 (256,448,3)
|
1419 |
+
00086/0891 7 (256,448,3)
|
1420 |
+
00086/0927 7 (256,448,3)
|
1421 |
+
00086/0938 7 (256,448,3)
|
1422 |
+
00086/0946 7 (256,448,3)
|
1423 |
+
00086/0963 7 (256,448,3)
|
1424 |
+
00086/0969 7 (256,448,3)
|
1425 |
+
00087/0023 7 (256,448,3)
|
1426 |
+
00087/0029 7 (256,448,3)
|
1427 |
+
00087/0144 7 (256,448,3)
|
1428 |
+
00087/0148 7 (256,448,3)
|
1429 |
+
00087/0159 7 (256,448,3)
|
1430 |
+
00087/0174 7 (256,448,3)
|
1431 |
+
00087/0283 7 (256,448,3)
|
1432 |
+
00087/0284 7 (256,448,3)
|
1433 |
+
00087/0294 7 (256,448,3)
|
1434 |
+
00087/0296 7 (256,448,3)
|
1435 |
+
00087/0498 7 (256,448,3)
|
1436 |
+
00087/0502 7 (256,448,3)
|
1437 |
+
00087/0532 7 (256,448,3)
|
1438 |
+
00087/0557 7 (256,448,3)
|
1439 |
+
00087/0559 7 (256,448,3)
|
1440 |
+
00087/0574 7 (256,448,3)
|
1441 |
+
00087/0577 7 (256,448,3)
|
1442 |
+
00088/0006 7 (256,448,3)
|
1443 |
+
00088/0268 7 (256,448,3)
|
1444 |
+
00088/0320 7 (256,448,3)
|
1445 |
+
00088/0412 7 (256,448,3)
|
1446 |
+
00088/0431 7 (256,448,3)
|
1447 |
+
00088/0432 7 (256,448,3)
|
1448 |
+
00088/0465 7 (256,448,3)
|
1449 |
+
00088/0507 7 (256,448,3)
|
1450 |
+
00088/0565 7 (256,448,3)
|
1451 |
+
00088/0629 7 (256,448,3)
|
1452 |
+
00088/0831 7 (256,448,3)
|
1453 |
+
00088/0836 7 (256,448,3)
|
1454 |
+
00088/0972 7 (256,448,3)
|
1455 |
+
00088/0974 7 (256,448,3)
|
1456 |
+
00088/0980 7 (256,448,3)
|
1457 |
+
00089/0067 7 (256,448,3)
|
1458 |
+
00089/0244 7 (256,448,3)
|
1459 |
+
00089/0404 7 (256,448,3)
|
1460 |
+
00089/0416 7 (256,448,3)
|
1461 |
+
00089/0419 7 (256,448,3)
|
1462 |
+
00089/0428 7 (256,448,3)
|
1463 |
+
00089/0712 7 (256,448,3)
|
1464 |
+
00089/0713 7 (256,448,3)
|
1465 |
+
00089/0723 7 (256,448,3)
|
1466 |
+
00089/0727 7 (256,448,3)
|
1467 |
+
00089/0770 7 (256,448,3)
|
1468 |
+
00089/0809 7 (256,448,3)
|
1469 |
+
00089/0811 7 (256,448,3)
|
1470 |
+
00089/0888 7 (256,448,3)
|
1471 |
+
00089/0898 7 (256,448,3)
|
1472 |
+
00089/0903 7 (256,448,3)
|
1473 |
+
00089/0907 7 (256,448,3)
|
1474 |
+
00089/0911 7 (256,448,3)
|
1475 |
+
00089/0915 7 (256,448,3)
|
1476 |
+
00089/0926 7 (256,448,3)
|
1477 |
+
00089/0955 7 (256,448,3)
|
1478 |
+
00090/0027 7 (256,448,3)
|
1479 |
+
00090/0028 7 (256,448,3)
|
1480 |
+
00090/0032 7 (256,448,3)
|
1481 |
+
00090/0038 7 (256,448,3)
|
1482 |
+
00090/0076 7 (256,448,3)
|
1483 |
+
00090/0081 7 (256,448,3)
|
1484 |
+
00090/0086 7 (256,448,3)
|
1485 |
+
00090/0119 7 (256,448,3)
|
1486 |
+
00090/0258 7 (256,448,3)
|
1487 |
+
00090/0261 7 (256,448,3)
|
1488 |
+
00090/0447 7 (256,448,3)
|
1489 |
+
00090/0498 7 (256,448,3)
|
1490 |
+
00090/0514 7 (256,448,3)
|
1491 |
+
00090/0523 7 (256,448,3)
|
1492 |
+
00090/0530 7 (256,448,3)
|
1493 |
+
00090/0540 7 (256,448,3)
|
1494 |
+
00090/0548 7 (256,448,3)
|
1495 |
+
00090/0565 7 (256,448,3)
|
1496 |
+
00090/0578 7 (256,448,3)
|
1497 |
+
00090/0580 7 (256,448,3)
|
1498 |
+
00090/0581 7 (256,448,3)
|
1499 |
+
00090/0780 7 (256,448,3)
|
1500 |
+
00090/0940 7 (256,448,3)
|
1501 |
+
00090/0984 7 (256,448,3)
|
1502 |
+
00091/0023 7 (256,448,3)
|
1503 |
+
00091/0051 7 (256,448,3)
|
1504 |
+
00091/0317 7 (256,448,3)
|
1505 |
+
00091/0320 7 (256,448,3)
|
1506 |
+
00091/0582 7 (256,448,3)
|
1507 |
+
00091/0585 7 (256,448,3)
|
1508 |
+
00091/0588 7 (256,448,3)
|
1509 |
+
00091/0601 7 (256,448,3)
|
1510 |
+
00091/0602 7 (256,448,3)
|
1511 |
+
00091/0603 7 (256,448,3)
|
1512 |
+
00091/0634 7 (256,448,3)
|
1513 |
+
00091/0693 7 (256,448,3)
|
1514 |
+
00091/0741 7 (256,448,3)
|
1515 |
+
00091/0966 7 (256,448,3)
|
1516 |
+
00091/0973 7 (256,448,3)
|
1517 |
+
00091/0985 7 (256,448,3)
|
1518 |
+
00092/0007 7 (256,448,3)
|
1519 |
+
00092/0132 7 (256,448,3)
|
1520 |
+
00092/0270 7 (256,448,3)
|
1521 |
+
00092/0296 7 (256,448,3)
|
1522 |
+
00092/0611 7 (256,448,3)
|
1523 |
+
00092/0625 7 (256,448,3)
|
1524 |
+
00092/0627 7 (256,448,3)
|
1525 |
+
00092/0651 7 (256,448,3)
|
1526 |
+
00092/0652 7 (256,448,3)
|
1527 |
+
00092/0910 7 (256,448,3)
|
1528 |
+
00093/0075 7 (256,448,3)
|
1529 |
+
00093/0078 7 (256,448,3)
|
1530 |
+
00093/0100 7 (256,448,3)
|
1531 |
+
00093/0132 7 (256,448,3)
|
1532 |
+
00093/0133 7 (256,448,3)
|
1533 |
+
00093/0176 7 (256,448,3)
|
1534 |
+
00093/0177 7 (256,448,3)
|
1535 |
+
00093/0178 7 (256,448,3)
|
1536 |
+
00093/0181 7 (256,448,3)
|
1537 |
+
00093/0183 7 (256,448,3)
|
1538 |
+
00093/0184 7 (256,448,3)
|
1539 |
+
00093/0286 7 (256,448,3)
|
1540 |
+
00093/0304 7 (256,448,3)
|
1541 |
+
00093/0305 7 (256,448,3)
|
1542 |
+
00093/0319 7 (256,448,3)
|
1543 |
+
00093/0324 7 (256,448,3)
|
1544 |
+
00093/0325 7 (256,448,3)
|
1545 |
+
00093/0327 7 (256,448,3)
|
1546 |
+
00093/0331 7 (256,448,3)
|
1547 |
+
00093/0444 7 (256,448,3)
|
1548 |
+
00093/0450 7 (256,448,3)
|
1549 |
+
00093/0593 7 (256,448,3)
|
1550 |
+
00094/0032 7 (256,448,3)
|
1551 |
+
00094/0057 7 (256,448,3)
|
1552 |
+
00094/0139 7 (256,448,3)
|
1553 |
+
00094/0206 7 (256,448,3)
|
1554 |
+
00094/0211 7 (256,448,3)
|
1555 |
+
00094/0215 7 (256,448,3)
|
1556 |
+
00094/0218 7 (256,448,3)
|
1557 |
+
00094/0257 7 (256,448,3)
|
1558 |
+
00094/0329 7 (256,448,3)
|
1559 |
+
00094/0331 7 (256,448,3)
|
1560 |
+
00094/0332 7 (256,448,3)
|
1561 |
+
00094/0369 7 (256,448,3)
|
1562 |
+
00094/0370 7 (256,448,3)
|
1563 |
+
00094/0383 7 (256,448,3)
|
1564 |
+
00094/0385 7 (256,448,3)
|
1565 |
+
00094/0387 7 (256,448,3)
|
1566 |
+
00094/0399 7 (256,448,3)
|
1567 |
+
00094/0605 7 (256,448,3)
|
1568 |
+
00094/0648 7 (256,448,3)
|
1569 |
+
00094/0649 7 (256,448,3)
|
1570 |
+
00094/0759 7 (256,448,3)
|
1571 |
+
00094/0800 7 (256,448,3)
|
1572 |
+
00094/0894 7 (256,448,3)
|
1573 |
+
00094/0896 7 (256,448,3)
|
1574 |
+
00095/0089 7 (256,448,3)
|
1575 |
+
00095/0108 7 (256,448,3)
|
1576 |
+
00095/0109 7 (256,448,3)
|
1577 |
+
00095/0114 7 (256,448,3)
|
1578 |
+
00095/0128 7 (256,448,3)
|
1579 |
+
00095/0133 7 (256,448,3)
|
1580 |
+
00095/0150 7 (256,448,3)
|
1581 |
+
00095/0153 7 (256,448,3)
|
1582 |
+
00095/0154 7 (256,448,3)
|
1583 |
+
00095/0196 7 (256,448,3)
|
1584 |
+
00095/0209 7 (256,448,3)
|
1585 |
+
00095/0228 7 (256,448,3)
|
1586 |
+
00095/0230 7 (256,448,3)
|
1587 |
+
00095/0231 7 (256,448,3)
|
1588 |
+
00095/0242 7 (256,448,3)
|
1589 |
+
00095/0243 7 (256,448,3)
|
1590 |
+
00095/0253 7 (256,448,3)
|
1591 |
+
00095/0280 7 (256,448,3)
|
1592 |
+
00095/0281 7 (256,448,3)
|
1593 |
+
00095/0283 7 (256,448,3)
|
1594 |
+
00095/0314 7 (256,448,3)
|
1595 |
+
00095/0868 7 (256,448,3)
|
1596 |
+
00095/0894 7 (256,448,3)
|
1597 |
+
00096/0062 7 (256,448,3)
|
1598 |
+
00096/0347 7 (256,448,3)
|
1599 |
+
00096/0348 7 (256,448,3)
|
1600 |
+
00096/0359 7 (256,448,3)
|
1601 |
+
00096/0363 7 (256,448,3)
|
1602 |
+
00096/0373 7 (256,448,3)
|
1603 |
+
00096/0378 7 (256,448,3)
|
1604 |
+
00096/0387 7 (256,448,3)
|
1605 |
+
00096/0395 7 (256,448,3)
|
1606 |
+
00096/0396 7 (256,448,3)
|
1607 |
+
00096/0404 7 (256,448,3)
|
1608 |
+
00096/0653 7 (256,448,3)
|
1609 |
+
00096/0668 7 (256,448,3)
|
1610 |
+
00096/0679 7 (256,448,3)
|
1611 |
+
00096/0729 7 (256,448,3)
|
1612 |
+
00096/0736 7 (256,448,3)
|
1613 |
+
00096/0823 7 (256,448,3)
|
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
basicsr/data/paired_image_dataset.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils import data as data
|
2 |
+
from torchvision.transforms.functional import normalize
|
3 |
+
|
4 |
+
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb, paired_paths_from_meta_info_file
|
5 |
+
from basicsr.data.transforms import augment, paired_random_crop
|
6 |
+
from basicsr.utils import FileClient, bgr2ycbcr, imfrombytes, img2tensor
|
7 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
8 |
+
|
9 |
+
|
10 |
+
@DATASET_REGISTRY.register()
|
11 |
+
class PairedImageDataset(data.Dataset):
|
12 |
+
"""Paired image dataset for image restoration.
|
13 |
+
|
14 |
+
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs.
|
15 |
+
|
16 |
+
There are three modes:
|
17 |
+
|
18 |
+
1. **lmdb**: Use lmdb files. If opt['io_backend'] == lmdb.
|
19 |
+
2. **meta_info_file**: Use meta information file to generate paths. \
|
20 |
+
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
|
21 |
+
3. **folder**: Scan folders to generate paths. The rest.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
25 |
+
dataroot_gt (str): Data root path for gt.
|
26 |
+
dataroot_lq (str): Data root path for lq.
|
27 |
+
meta_info_file (str): Path for meta information file.
|
28 |
+
io_backend (dict): IO backend type and other kwarg.
|
29 |
+
filename_tmpl (str): Template for each filename. Note that the template excludes the file extension.
|
30 |
+
Default: '{}'.
|
31 |
+
gt_size (int): Cropped patched size for gt patches.
|
32 |
+
use_hflip (bool): Use horizontal flips.
|
33 |
+
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
|
34 |
+
scale (bool): Scale, which will be added automatically.
|
35 |
+
phase (str): 'train' or 'val'.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, opt):
|
39 |
+
super(PairedImageDataset, self).__init__()
|
40 |
+
self.opt = opt
|
41 |
+
# file client (io backend)
|
42 |
+
self.file_client = None
|
43 |
+
self.io_backend_opt = opt['io_backend']
|
44 |
+
self.mean = opt['mean'] if 'mean' in opt else None
|
45 |
+
self.std = opt['std'] if 'std' in opt else None
|
46 |
+
|
47 |
+
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
|
48 |
+
if 'filename_tmpl' in opt:
|
49 |
+
self.filename_tmpl = opt['filename_tmpl']
|
50 |
+
else:
|
51 |
+
self.filename_tmpl = '{}'
|
52 |
+
|
53 |
+
if self.io_backend_opt['type'] == 'lmdb':
|
54 |
+
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
|
55 |
+
self.io_backend_opt['client_keys'] = ['lq', 'gt']
|
56 |
+
self.paths = paired_paths_from_lmdb([self.lq_folder, self.gt_folder], ['lq', 'gt'])
|
57 |
+
elif 'meta_info_file' in self.opt and self.opt['meta_info_file'] is not None:
|
58 |
+
self.paths = paired_paths_from_meta_info_file([self.lq_folder, self.gt_folder], ['lq', 'gt'],
|
59 |
+
self.opt['meta_info_file'], self.filename_tmpl)
|
60 |
+
else:
|
61 |
+
self.paths = paired_paths_from_folder([self.lq_folder, self.gt_folder], ['lq', 'gt'], self.filename_tmpl)
|
62 |
+
|
63 |
+
def __getitem__(self, index):
|
64 |
+
if self.file_client is None:
|
65 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
66 |
+
|
67 |
+
scale = self.opt['scale']
|
68 |
+
|
69 |
+
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
|
70 |
+
# image range: [0, 1], float32.
|
71 |
+
gt_path = self.paths[index]['gt_path']
|
72 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
73 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
74 |
+
lq_path = self.paths[index]['lq_path']
|
75 |
+
img_bytes = self.file_client.get(lq_path, 'lq')
|
76 |
+
img_lq = imfrombytes(img_bytes, float32=True)
|
77 |
+
|
78 |
+
# augmentation for training
|
79 |
+
if self.opt['phase'] == 'train':
|
80 |
+
gt_size = self.opt['gt_size']
|
81 |
+
# random crop
|
82 |
+
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path)
|
83 |
+
# flip, rotation
|
84 |
+
img_gt, img_lq = augment([img_gt, img_lq], self.opt['use_hflip'], self.opt['use_rot'])
|
85 |
+
|
86 |
+
# color space transform
|
87 |
+
if 'color' in self.opt and self.opt['color'] == 'y':
|
88 |
+
img_gt = bgr2ycbcr(img_gt, y_only=True)[..., None]
|
89 |
+
img_lq = bgr2ycbcr(img_lq, y_only=True)[..., None]
|
90 |
+
|
91 |
+
# crop the unmatched GT images during validation or testing, especially for SR benchmark datasets
|
92 |
+
# TODO: It is better to update the datasets, rather than force to crop
|
93 |
+
if self.opt['phase'] != 'train':
|
94 |
+
img_gt = img_gt[0:img_lq.shape[0] * scale, 0:img_lq.shape[1] * scale, :]
|
95 |
+
|
96 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
97 |
+
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True)
|
98 |
+
# normalize
|
99 |
+
if self.mean is not None or self.std is not None:
|
100 |
+
normalize(img_lq, self.mean, self.std, inplace=True)
|
101 |
+
normalize(img_gt, self.mean, self.std, inplace=True)
|
102 |
+
|
103 |
+
return {'lq': img_lq, 'gt': img_gt, 'lq_path': lq_path, 'gt_path': gt_path}
|
104 |
+
|
105 |
+
def __len__(self):
|
106 |
+
return len(self.paths)
|
basicsr/data/prefetch_dataloader.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import queue as Queue
|
2 |
+
import threading
|
3 |
+
import torch
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
|
7 |
+
class PrefetchGenerator(threading.Thread):
|
8 |
+
"""A general prefetch generator.
|
9 |
+
|
10 |
+
Reference: https://stackoverflow.com/questions/7323664/python-generator-pre-fetch
|
11 |
+
|
12 |
+
Args:
|
13 |
+
generator: Python generator.
|
14 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, generator, num_prefetch_queue):
|
18 |
+
threading.Thread.__init__(self)
|
19 |
+
self.queue = Queue.Queue(num_prefetch_queue)
|
20 |
+
self.generator = generator
|
21 |
+
self.daemon = True
|
22 |
+
self.start()
|
23 |
+
|
24 |
+
def run(self):
|
25 |
+
for item in self.generator:
|
26 |
+
self.queue.put(item)
|
27 |
+
self.queue.put(None)
|
28 |
+
|
29 |
+
def __next__(self):
|
30 |
+
next_item = self.queue.get()
|
31 |
+
if next_item is None:
|
32 |
+
raise StopIteration
|
33 |
+
return next_item
|
34 |
+
|
35 |
+
def __iter__(self):
|
36 |
+
return self
|
37 |
+
|
38 |
+
|
39 |
+
class PrefetchDataLoader(DataLoader):
|
40 |
+
"""Prefetch version of dataloader.
|
41 |
+
|
42 |
+
Reference: https://github.com/IgorSusmelj/pytorch-styleguide/issues/5#
|
43 |
+
|
44 |
+
TODO:
|
45 |
+
Need to test on single gpu and ddp (multi-gpu). There is a known issue in
|
46 |
+
ddp.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
num_prefetch_queue (int): Number of prefetch queue.
|
50 |
+
kwargs (dict): Other arguments for dataloader.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(self, num_prefetch_queue, **kwargs):
|
54 |
+
self.num_prefetch_queue = num_prefetch_queue
|
55 |
+
super(PrefetchDataLoader, self).__init__(**kwargs)
|
56 |
+
|
57 |
+
def __iter__(self):
|
58 |
+
return PrefetchGenerator(super().__iter__(), self.num_prefetch_queue)
|
59 |
+
|
60 |
+
|
61 |
+
class CPUPrefetcher():
|
62 |
+
"""CPU prefetcher.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
loader: Dataloader.
|
66 |
+
"""
|
67 |
+
|
68 |
+
def __init__(self, loader):
|
69 |
+
self.ori_loader = loader
|
70 |
+
self.loader = iter(loader)
|
71 |
+
|
72 |
+
def next(self):
|
73 |
+
try:
|
74 |
+
return next(self.loader)
|
75 |
+
except StopIteration:
|
76 |
+
return None
|
77 |
+
|
78 |
+
def reset(self):
|
79 |
+
self.loader = iter(self.ori_loader)
|
80 |
+
|
81 |
+
|
82 |
+
class CUDAPrefetcher():
|
83 |
+
"""CUDA prefetcher.
|
84 |
+
|
85 |
+
Reference: https://github.com/NVIDIA/apex/issues/304#
|
86 |
+
|
87 |
+
It may consume more GPU memory.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
loader: Dataloader.
|
91 |
+
opt (dict): Options.
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(self, loader, opt):
|
95 |
+
self.ori_loader = loader
|
96 |
+
self.loader = iter(loader)
|
97 |
+
self.opt = opt
|
98 |
+
self.stream = torch.cuda.Stream()
|
99 |
+
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
|
100 |
+
self.preload()
|
101 |
+
|
102 |
+
def preload(self):
|
103 |
+
try:
|
104 |
+
self.batch = next(self.loader) # self.batch is a dict
|
105 |
+
except StopIteration:
|
106 |
+
self.batch = None
|
107 |
+
return None
|
108 |
+
# put tensors to gpu
|
109 |
+
with torch.cuda.stream(self.stream):
|
110 |
+
for k, v in self.batch.items():
|
111 |
+
if torch.is_tensor(v):
|
112 |
+
self.batch[k] = self.batch[k].to(device=self.device, non_blocking=True)
|
113 |
+
|
114 |
+
def next(self):
|
115 |
+
torch.cuda.current_stream().wait_stream(self.stream)
|
116 |
+
batch = self.batch
|
117 |
+
self.preload()
|
118 |
+
return batch
|
119 |
+
|
120 |
+
def reset(self):
|
121 |
+
self.loader = iter(self.ori_loader)
|
122 |
+
self.preload()
|
basicsr/data/realesrgan_dataset.py
ADDED
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import os.path as osp
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
import torch
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
import albumentations
|
12 |
+
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.utils import data as data
|
15 |
+
|
16 |
+
from basicsr.utils import DiffJPEG
|
17 |
+
from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels
|
18 |
+
from basicsr.data.transforms import augment
|
19 |
+
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
|
20 |
+
from basicsr.utils.registry import DATASET_REGISTRY
|
21 |
+
from basicsr.utils.img_process_util import filter2D
|
22 |
+
from basicsr.data.transforms import paired_random_crop, random_crop
|
23 |
+
from basicsr.data.degradations import random_add_gaussian_noise_pt, random_add_poisson_noise_pt
|
24 |
+
|
25 |
+
from utils import util_image
|
26 |
+
|
27 |
+
def readline_txt(txt_file):
|
28 |
+
txt_file = [txt_file, ] if isinstance(txt_file, str) else txt_file
|
29 |
+
out = []
|
30 |
+
for txt_file_current in txt_file:
|
31 |
+
with open(txt_file_current, 'r') as ff:
|
32 |
+
out.extend([x[:-1] for x in ff.readlines()])
|
33 |
+
|
34 |
+
return out
|
35 |
+
|
36 |
+
@DATASET_REGISTRY.register(suffix='basicsr')
|
37 |
+
class RealESRGANDataset(data.Dataset):
|
38 |
+
"""Dataset used for Real-ESRGAN model:
|
39 |
+
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
|
40 |
+
|
41 |
+
It loads gt (Ground-Truth) images, and augments them.
|
42 |
+
It also generates blur kernels and sinc kernels for generating low-quality images.
|
43 |
+
Note that the low-quality images are processed in tensors on GPUS for faster processing.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
opt (dict): Config for train datasets. It contains the following keys:
|
47 |
+
dataroot_gt (str): Data root path for gt.
|
48 |
+
meta_info (str): Path for meta information file.
|
49 |
+
io_backend (dict): IO backend type and other kwarg.
|
50 |
+
use_hflip (bool): Use horizontal flips.
|
51 |
+
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation).
|
52 |
+
Please see more options in the codes.
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, opt, mode='training'):
|
56 |
+
super(RealESRGANDataset, self).__init__()
|
57 |
+
self.opt = opt
|
58 |
+
self.file_client = None
|
59 |
+
self.io_backend_opt = opt['io_backend']
|
60 |
+
|
61 |
+
# file client (lmdb io backend)
|
62 |
+
self.image_paths = []
|
63 |
+
self.text_paths = []
|
64 |
+
self.moment_paths = []
|
65 |
+
if opt.get('data_source', None) is not None:
|
66 |
+
for ii in range(len(opt['data_source'])):
|
67 |
+
configs = opt['data_source'].get(f'source{ii+1}')
|
68 |
+
root_path = Path(configs.root_path)
|
69 |
+
im_folder = root_path / configs.image_path
|
70 |
+
im_ext = configs.im_ext
|
71 |
+
image_stems = sorted([x.stem for x in im_folder.glob(f"*.{im_ext}")])
|
72 |
+
if configs.get('length', None) is not None:
|
73 |
+
assert configs.length < len(image_stems)
|
74 |
+
image_stems = image_stems[:configs.length]
|
75 |
+
|
76 |
+
if configs.get("text_path", None) is not None:
|
77 |
+
text_folder = root_path / configs.text_path
|
78 |
+
text_stems = [x.stem for x in text_folder.glob("*.txt")]
|
79 |
+
image_stems = sorted(list(set(image_stems).intersection(set(text_stems))))
|
80 |
+
self.text_paths.extend([str(text_folder / f"{x}.txt") for x in image_stems])
|
81 |
+
else:
|
82 |
+
self.text_paths.extend([None, ] * len(image_stems))
|
83 |
+
|
84 |
+
self.image_paths.extend([str(im_folder / f"{x}.{im_ext}") for x in image_stems])
|
85 |
+
|
86 |
+
if configs.get("moment_path", None) is not None:
|
87 |
+
moment_folder = root_path / configs.moment_path
|
88 |
+
self.moment_paths.extend([str(moment_folder / f"{x}.npy") for x in image_stems])
|
89 |
+
else:
|
90 |
+
self.moment_paths.extend([None, ] * len(image_stems))
|
91 |
+
|
92 |
+
# blur settings for the first degradation
|
93 |
+
self.blur_kernel_size = opt['blur_kernel_size']
|
94 |
+
self.kernel_list = opt['kernel_list']
|
95 |
+
self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability
|
96 |
+
self.blur_sigma = opt['blur_sigma']
|
97 |
+
self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels
|
98 |
+
self.betap_range = opt['betap_range'] # betap used in plateau blur kernels
|
99 |
+
self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters
|
100 |
+
|
101 |
+
# blur settings for the second degradation
|
102 |
+
self.blur_kernel_size2 = opt['blur_kernel_size2']
|
103 |
+
self.kernel_list2 = opt['kernel_list2']
|
104 |
+
self.kernel_prob2 = opt['kernel_prob2']
|
105 |
+
self.blur_sigma2 = opt['blur_sigma2']
|
106 |
+
self.betag_range2 = opt['betag_range2']
|
107 |
+
self.betap_range2 = opt['betap_range2']
|
108 |
+
self.sinc_prob2 = opt['sinc_prob2']
|
109 |
+
|
110 |
+
# a final sinc filter
|
111 |
+
self.final_sinc_prob = opt['final_sinc_prob']
|
112 |
+
|
113 |
+
self.kernel_range1 = [x for x in range(3, opt['blur_kernel_size'], 2)] # kernel size ranges from 7 to 21
|
114 |
+
self.kernel_range2 = [x for x in range(3, opt['blur_kernel_size2'], 2)] # kernel size ranges from 7 to 21
|
115 |
+
# TODO: kernel range is now hard-coded, should be in the configure file
|
116 |
+
# convolving with pulse tensor brings no blurry effect
|
117 |
+
self.pulse_tensor = torch.zeros(opt['blur_kernel_size2'], opt['blur_kernel_size2']).float()
|
118 |
+
self.pulse_tensor[opt['blur_kernel_size2']//2, opt['blur_kernel_size2']//2] = 1
|
119 |
+
|
120 |
+
self.mode = mode
|
121 |
+
|
122 |
+
def __getitem__(self, index):
|
123 |
+
if self.file_client is None:
|
124 |
+
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
|
125 |
+
|
126 |
+
# -------------------------------- Load gt images -------------------------------- #
|
127 |
+
# Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32.
|
128 |
+
gt_path = self.image_paths[index]
|
129 |
+
# avoid errors caused by high latency in reading files
|
130 |
+
retry = 3
|
131 |
+
while retry > 0:
|
132 |
+
try:
|
133 |
+
img_bytes = self.file_client.get(gt_path, 'gt')
|
134 |
+
img_gt = imfrombytes(img_bytes, float32=True)
|
135 |
+
except:
|
136 |
+
index = random.randint(0, self.__len__())
|
137 |
+
gt_path = self.image_paths[index]
|
138 |
+
time.sleep(1) # sleep 1s for occasional server congestion
|
139 |
+
finally:
|
140 |
+
retry -= 1
|
141 |
+
if self.mode == 'testing':
|
142 |
+
if not hasattr(self, 'test_aug'):
|
143 |
+
self.test_aug = albumentations.Compose([
|
144 |
+
albumentations.SmallestMaxSize(
|
145 |
+
max_size=self.opt['gt_size'],
|
146 |
+
interpolation=cv2.INTER_AREA,
|
147 |
+
),
|
148 |
+
albumentations.CenterCrop(self.opt['gt_size'], self.opt['gt_size']),
|
149 |
+
])
|
150 |
+
img_gt = self.test_aug(image=img_gt)['image']
|
151 |
+
elif self.mode == 'training':
|
152 |
+
# -------------------- Do augmentation for training: flip, rotation -------------------- #
|
153 |
+
if self.opt['use_hflip'] or self.opt['use_rot']:
|
154 |
+
img_gt = augment(img_gt, self.opt['use_hflip'], self.opt['use_rot'])
|
155 |
+
|
156 |
+
h, w = img_gt.shape[0:2]
|
157 |
+
gt_size = self.opt['gt_size']
|
158 |
+
|
159 |
+
# resize or pad
|
160 |
+
if not self.opt['random_crop']:
|
161 |
+
if not min(h, w) == gt_size:
|
162 |
+
if not hasattr(self, 'smallest_resizer'):
|
163 |
+
self.smallest_resizer = util_image.SmallestMaxSize(
|
164 |
+
max_size=gt_size, pass_resize=False,
|
165 |
+
)
|
166 |
+
img_gt = self.smallest_resizer(img_gt)
|
167 |
+
|
168 |
+
# center crop
|
169 |
+
if not hasattr(self, 'center_cropper'):
|
170 |
+
self.center_cropper = albumentations.CenterCrop(gt_size, gt_size)
|
171 |
+
img_gt = self.center_cropper(image=img_gt)['image']
|
172 |
+
else:
|
173 |
+
img_gt = random_crop(img_gt, self.opt['gt_size'])
|
174 |
+
else:
|
175 |
+
raise ValueError(f'Unexpected value {self.mode} for mode parameter')
|
176 |
+
|
177 |
+
# ------------------------ Generate kernels (used in the first degradation) ------------------------ #
|
178 |
+
kernel_size = random.choice(self.kernel_range1)
|
179 |
+
if np.random.uniform() < self.opt['sinc_prob']:
|
180 |
+
# this sinc filter setting is for kernels ranging from [7, 21]
|
181 |
+
if kernel_size < 13:
|
182 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
183 |
+
else:
|
184 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
185 |
+
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
186 |
+
else:
|
187 |
+
kernel = random_mixed_kernels(
|
188 |
+
self.kernel_list,
|
189 |
+
self.kernel_prob,
|
190 |
+
kernel_size,
|
191 |
+
self.blur_sigma,
|
192 |
+
self.blur_sigma, [-math.pi, math.pi],
|
193 |
+
self.betag_range,
|
194 |
+
self.betap_range,
|
195 |
+
noise_range=None)
|
196 |
+
# pad kernel
|
197 |
+
pad_size = (self.blur_kernel_size - kernel_size) // 2
|
198 |
+
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
|
199 |
+
|
200 |
+
# ------------------------ Generate kernels (used in the second degradation) ------------------------ #
|
201 |
+
kernel_size = random.choice(self.kernel_range2)
|
202 |
+
if np.random.uniform() < self.opt['sinc_prob2']:
|
203 |
+
if kernel_size < 13:
|
204 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
205 |
+
else:
|
206 |
+
omega_c = np.random.uniform(np.pi / 5, np.pi)
|
207 |
+
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False)
|
208 |
+
else:
|
209 |
+
kernel2 = random_mixed_kernels(
|
210 |
+
self.kernel_list2,
|
211 |
+
self.kernel_prob2,
|
212 |
+
kernel_size,
|
213 |
+
self.blur_sigma2,
|
214 |
+
self.blur_sigma2, [-math.pi, math.pi],
|
215 |
+
self.betag_range2,
|
216 |
+
self.betap_range2,
|
217 |
+
noise_range=None)
|
218 |
+
|
219 |
+
# pad kernel
|
220 |
+
pad_size = (self.blur_kernel_size2 - kernel_size) // 2
|
221 |
+
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size)))
|
222 |
+
|
223 |
+
# ------------------------------------- the final sinc kernel ------------------------------------- #
|
224 |
+
if np.random.uniform() < self.opt['final_sinc_prob']:
|
225 |
+
kernel_size = random.choice(self.kernel_range2)
|
226 |
+
omega_c = np.random.uniform(np.pi / 3, np.pi)
|
227 |
+
sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=self.blur_kernel_size2)
|
228 |
+
sinc_kernel = torch.FloatTensor(sinc_kernel)
|
229 |
+
else:
|
230 |
+
sinc_kernel = self.pulse_tensor
|
231 |
+
|
232 |
+
# BGR to RGB, HWC to CHW, numpy to tensor
|
233 |
+
img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0]
|
234 |
+
kernel = torch.FloatTensor(kernel)
|
235 |
+
kernel2 = torch.FloatTensor(kernel2)
|
236 |
+
|
237 |
+
if self.text_paths[index] is None or self.opt['random_crop']:
|
238 |
+
prompt = ""
|
239 |
+
else:
|
240 |
+
with open(self.text_paths[index], 'r') as ff:
|
241 |
+
prompt = ff.read()
|
242 |
+
if self.opt.max_token_length is not None:
|
243 |
+
prompt = prompt[:self.opt.max_token_length]
|
244 |
+
|
245 |
+
return_d = {
|
246 |
+
'gt': img_gt,
|
247 |
+
'gt_path': gt_path,
|
248 |
+
'txt': prompt,
|
249 |
+
'kernel1': kernel,
|
250 |
+
'kernel2': kernel2,
|
251 |
+
'sinc_kernel': sinc_kernel,
|
252 |
+
}
|
253 |
+
if self.moment_paths[index] is not None and (not self.opt['random_crop']):
|
254 |
+
return_d['gt_moment'] = np.load(self.moment_paths[index])
|
255 |
+
|
256 |
+
return return_d
|
257 |
+
|
258 |
+
def __len__(self):
|
259 |
+
return len(self.image_paths)
|
260 |
+
|
261 |
+
def degrade_fun(self, conf_degradation, im_gt, kernel1, kernel2, sinc_kernel):
|
262 |
+
if not hasattr(self, 'jpeger'):
|
263 |
+
self.jpeger = DiffJPEG(differentiable=False) # simulate JPEG compression artifacts
|
264 |
+
|
265 |
+
ori_h, ori_w = im_gt.size()[2:4]
|
266 |
+
sf = conf_degradation.sf
|
267 |
+
|
268 |
+
# ----------------------- The first degradation process ----------------------- #
|
269 |
+
# blur
|
270 |
+
out = filter2D(im_gt, kernel1)
|
271 |
+
# random resize
|
272 |
+
updown_type = random.choices(
|
273 |
+
['up', 'down', 'keep'],
|
274 |
+
conf_degradation['resize_prob'],
|
275 |
+
)[0]
|
276 |
+
if updown_type == 'up':
|
277 |
+
scale = random.uniform(1, conf_degradation['resize_range'][1])
|
278 |
+
elif updown_type == 'down':
|
279 |
+
scale = random.uniform(conf_degradation['resize_range'][0], 1)
|
280 |
+
else:
|
281 |
+
scale = 1
|
282 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
283 |
+
out = F.interpolate(out, scale_factor=scale, mode=mode)
|
284 |
+
# add noise
|
285 |
+
gray_noise_prob = conf_degradation['gray_noise_prob']
|
286 |
+
if random.random() < conf_degradation['gaussian_noise_prob']:
|
287 |
+
out = random_add_gaussian_noise_pt(
|
288 |
+
out,
|
289 |
+
sigma_range=conf_degradation['noise_range'],
|
290 |
+
clip=True,
|
291 |
+
rounds=False,
|
292 |
+
gray_prob=gray_noise_prob,
|
293 |
+
)
|
294 |
+
else:
|
295 |
+
out = random_add_poisson_noise_pt(
|
296 |
+
out,
|
297 |
+
scale_range=conf_degradation['poisson_scale_range'],
|
298 |
+
gray_prob=gray_noise_prob,
|
299 |
+
clip=True,
|
300 |
+
rounds=False)
|
301 |
+
# JPEG compression
|
302 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range'])
|
303 |
+
out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts
|
304 |
+
out = self.jpeger(out, quality=jpeg_p)
|
305 |
+
|
306 |
+
# ----------------------- The second degradation process ----------------------- #
|
307 |
+
# blur
|
308 |
+
if random.random() < conf_degradation['second_order_prob']:
|
309 |
+
if random.random() < conf_degradation['second_blur_prob']:
|
310 |
+
out = filter2D(out, kernel2)
|
311 |
+
# random resize
|
312 |
+
updown_type = random.choices(
|
313 |
+
['up', 'down', 'keep'],
|
314 |
+
conf_degradation['resize_prob2'],
|
315 |
+
)[0]
|
316 |
+
if updown_type == 'up':
|
317 |
+
scale = random.uniform(1, conf_degradation['resize_range2'][1])
|
318 |
+
elif updown_type == 'down':
|
319 |
+
scale = random.uniform(conf_degradation['resize_range2'][0], 1)
|
320 |
+
else:
|
321 |
+
scale = 1
|
322 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
323 |
+
out = F.interpolate(
|
324 |
+
out,
|
325 |
+
size=(int(ori_h / sf * scale), int(ori_w / sf * scale)),
|
326 |
+
mode=mode,
|
327 |
+
)
|
328 |
+
# add noise
|
329 |
+
gray_noise_prob = conf_degradation['gray_noise_prob2']
|
330 |
+
if random.random() < conf_degradation['gaussian_noise_prob2']:
|
331 |
+
out = random_add_gaussian_noise_pt(
|
332 |
+
out,
|
333 |
+
sigma_range=conf_degradation['noise_range2'],
|
334 |
+
clip=True,
|
335 |
+
rounds=False,
|
336 |
+
gray_prob=gray_noise_prob,
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
out = random_add_poisson_noise_pt(
|
340 |
+
out,
|
341 |
+
scale_range=conf_degradation['poisson_scale_range2'],
|
342 |
+
gray_prob=gray_noise_prob,
|
343 |
+
clip=True,
|
344 |
+
rounds=False,
|
345 |
+
)
|
346 |
+
|
347 |
+
# JPEG compression + the final sinc filter
|
348 |
+
# We also need to resize images to desired sizes. We group [resize back + sinc filter] together
|
349 |
+
# as one operation.
|
350 |
+
# We consider two orders:
|
351 |
+
# 1. [resize back + sinc filter] + JPEG compression
|
352 |
+
# 2. JPEG compression + [resize back + sinc filter]
|
353 |
+
# Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines.
|
354 |
+
if random.random() < 0.5:
|
355 |
+
# resize back + the final sinc filter
|
356 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
357 |
+
out = F.interpolate(
|
358 |
+
out,
|
359 |
+
size=(ori_h // sf, ori_w // sf),
|
360 |
+
mode=mode,
|
361 |
+
)
|
362 |
+
out = filter2D(out, sinc_kernel)
|
363 |
+
# JPEG compression
|
364 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
|
365 |
+
out = torch.clamp(out, 0, 1)
|
366 |
+
out = self.jpeger(out, quality=jpeg_p)
|
367 |
+
else:
|
368 |
+
# JPEG compression
|
369 |
+
jpeg_p = out.new_zeros(out.size(0)).uniform_(*conf_degradation['jpeg_range2'])
|
370 |
+
out = torch.clamp(out, 0, 1)
|
371 |
+
out = self.jpeger(out, quality=jpeg_p)
|
372 |
+
# resize back + the final sinc filter
|
373 |
+
mode = random.choice(['area', 'bilinear', 'bicubic'])
|
374 |
+
out = F.interpolate(
|
375 |
+
out,
|
376 |
+
size=(ori_h // sf, ori_w // sf),
|
377 |
+
mode=mode,
|
378 |
+
)
|
379 |
+
out = filter2D(out, sinc_kernel)
|
380 |
+
|
381 |
+
# clamp and round
|
382 |
+
im_lq = torch.clamp((out * 255.0).round(), 0, 255) / 255.
|
383 |
+
|
384 |
+
return {'lq':im_lq.contiguous(), 'gt':im_gt}
|