Spaces:
Runtime error
Runtime error
File size: 11,780 Bytes
8aa9c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import argparse
import datetime
import inspect
import os
import random
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from collections import OrderedDict
import torch
import torch.distributed as dist
from diffusers import AutoencoderKL, DDIMScheduler, UniPCMultistepScheduler
from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from magicanimate.models.unet_controlnet import UNet3DConditionModel
from magicanimate.models.controlnet import ControlNetModel
from magicanimate.models.appearance_encoder import AppearanceEncoderModel
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
from magicanimate.pipelines.pipeline_animation import AnimationPipeline
from magicanimate.utils.util import save_videos_grid
from magicanimate.utils.dist_tools import distributed_init
from accelerate.utils import set_seed
from magicanimate.utils.videoreader import VideoReader
from einops import rearrange
from pathlib import Path
def main(args):
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
config = OmegaConf.load(args.config)
# Initialize distributed training
device = torch.device(f"cuda:{args.rank}")
dist_kwargs = {"rank":args.rank, "world_size":args.world_size, "dist":args.dist}
if config.savename is None:
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"samples/{Path(args.config).stem}-{time_str}"
else:
savedir = f"samples/{config.savename}"
if args.dist:
dist.broadcast_object_list([savedir], 0)
dist.barrier()
if args.rank == 0:
os.makedirs(savedir, exist_ok=True)
inference_config = OmegaConf.load(config.inference_config)
motion_module = config.motion_module
### >>> create animation pipeline >>> ###
tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
if config.pretrained_unet_path:
unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_unet_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
else:
unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
appearance_encoder = AppearanceEncoderModel.from_pretrained(config.pretrained_appearance_encoder_path, subfolder="appearance_encoder").to(device)
reference_control_writer = ReferenceAttentionControl(appearance_encoder, do_classifier_free_guidance=True, mode='write', fusion_blocks=config.fusion_blocks)
reference_control_reader = ReferenceAttentionControl(unet, do_classifier_free_guidance=True, mode='read', fusion_blocks=config.fusion_blocks)
if config.pretrained_vae_path is not None:
vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
else:
vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae")
### Load controlnet
controlnet = ControlNetModel.from_pretrained(config.pretrained_controlnet_path)
unet.enable_xformers_memory_efficient_attention()
appearance_encoder.enable_xformers_memory_efficient_attention()
controlnet.enable_xformers_memory_efficient_attention()
vae.to(torch.float16)
unet.to(torch.float16)
text_encoder.to(torch.float16)
appearance_encoder.to(torch.float16)
controlnet.to(torch.float16)
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
# NOTE: UniPCMultistepScheduler
)
# 1. unet ckpt
# 1.1 motion module
motion_module_state_dict = torch.load(motion_module, map_location="cpu")
if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
motion_module_state_dict = motion_module_state_dict['state_dict'] if 'state_dict' in motion_module_state_dict else motion_module_state_dict
try:
# extra steps for self-trained models
state_dict = OrderedDict()
for key in motion_module_state_dict.keys():
if key.startswith("module."):
_key = key.split("module.")[-1]
state_dict[_key] = motion_module_state_dict[key]
else:
state_dict[key] = motion_module_state_dict[key]
motion_module_state_dict = state_dict
del state_dict
missing, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
except:
_tmp_ = OrderedDict()
for key in motion_module_state_dict.keys():
if "motion_modules" in key:
if key.startswith("unet."):
_key = key.split('unet.')[-1]
_tmp_[_key] = motion_module_state_dict[key]
else:
_tmp_[key] = motion_module_state_dict[key]
missing, unexpected = unet.load_state_dict(_tmp_, strict=False)
assert len(unexpected) == 0
del _tmp_
del motion_module_state_dict
pipeline.to(device)
### <<< create validation pipeline <<< ###
random_seeds = config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(config.source_image) if len(random_seeds) == 1 else random_seeds
# input test videos (either source video/ conditions)
test_videos = config.video_path
source_images = config.source_image
num_actual_inference_steps = config.get("num_actual_inference_steps", config.steps)
# read size, step from yaml file
sizes = [config.size] * len(test_videos)
steps = [config.S] * len(test_videos)
config.random_seed = []
prompt = n_prompt = ""
for idx, (source_image, test_video, random_seed, size, step) in tqdm(
enumerate(zip(source_images, test_videos, random_seeds, sizes, steps)),
total=len(test_videos),
disable=(args.rank!=0)
):
samples_per_video = []
samples_per_clip = []
# manually set random seed for reproduction
if random_seed != -1:
torch.manual_seed(random_seed)
set_seed(random_seed)
else:
torch.seed()
config.random_seed.append(torch.initial_seed())
if test_video.endswith('.mp4'):
control = VideoReader(test_video).read()
if control[0].shape[0] != size:
control = [np.array(Image.fromarray(c).resize((size, size))) for c in control]
if config.max_length is not None:
control = control[config.offset: (config.offset+config.max_length)]
control = np.array(control)
if source_image.endswith(".mp4"):
source_image = np.array(Image.fromarray(VideoReader(source_image).read()[0]).resize((size, size)))
else:
source_image = np.array(Image.open(source_image).resize((size, size)))
H, W, C = source_image.shape
print(f"current seed: {torch.initial_seed()}")
init_latents = None
# print(f"sampling {prompt} ...")
original_length = control.shape[0]
if control.shape[0] % config.L > 0:
control = np.pad(control, ((0, config.L-control.shape[0] % config.L), (0, 0), (0, 0), (0, 0)), mode='edge')
generator = torch.Generator(device=torch.device("cuda:0"))
generator.manual_seed(torch.initial_seed())
sample = pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = config.steps,
guidance_scale = config.guidance_scale,
width = W,
height = H,
video_length = len(control),
controlnet_condition = control,
init_latents = init_latents,
generator = generator,
num_actual_inference_steps = num_actual_inference_steps,
appearance_encoder = appearance_encoder,
reference_control_writer = reference_control_writer,
reference_control_reader = reference_control_reader,
source_image = source_image,
**dist_kwargs,
).videos
if args.rank == 0:
source_images = np.array([source_image] * original_length)
source_images = rearrange(torch.from_numpy(source_images), "t h w c -> 1 c t h w") / 255.0
samples_per_video.append(source_images)
control = control / 255.0
control = rearrange(control, "t h w c -> 1 c t h w")
control = torch.from_numpy(control)
samples_per_video.append(control[:, :, :original_length])
samples_per_video.append(sample[:, :, :original_length])
samples_per_video = torch.cat(samples_per_video)
video_name = os.path.basename(test_video)[:-4]
source_name = os.path.basename(config.source_image[idx]).split(".")[0]
save_videos_grid(samples_per_video[-1:], f"{savedir}/videos/{source_name}_{video_name}.mp4")
save_videos_grid(samples_per_video, f"{savedir}/videos/{source_name}_{video_name}/grid.mp4")
if config.save_individual_videos:
save_videos_grid(samples_per_video[1:2], f"{savedir}/videos/{source_name}_{video_name}/ctrl.mp4")
save_videos_grid(samples_per_video[0:1], f"{savedir}/videos/{source_name}_{video_name}/orig.mp4")
if args.dist:
dist.barrier()
if args.rank == 0:
OmegaConf.save(config, f"{savedir}/config.yaml")
def distributed_main(device_id, args):
args.rank = device_id
args.device_id = device_id
if torch.cuda.is_available():
torch.cuda.set_device(args.device_id)
torch.cuda.init()
distributed_init(args)
main(args)
def run(args):
if args.dist:
args.world_size = max(1, torch.cuda.device_count())
assert args.world_size <= torch.cuda.device_count()
if args.world_size > 0 and torch.cuda.device_count() > 1:
port = random.randint(10000, 20000)
args.init_method = f"tcp://localhost:{port}"
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args,),
nprocs=args.world_size,
)
else:
main(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--dist", action="store_true", required=False)
parser.add_argument("--rank", type=int, default=0, required=False)
parser.add_argument("--world_size", type=int, default=1, required=False)
args = parser.parse_args()
run(args)
|