File size: 11,780 Bytes
8aa9c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import argparse
import datetime
import inspect
import os
import random
import numpy as np

from PIL import Image
from omegaconf import OmegaConf
from collections import OrderedDict

import torch
import torch.distributed as dist

from diffusers import AutoencoderKL, DDIMScheduler, UniPCMultistepScheduler

from tqdm import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from magicanimate.models.unet_controlnet import UNet3DConditionModel
from magicanimate.models.controlnet import ControlNetModel
from magicanimate.models.appearance_encoder import AppearanceEncoderModel
from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
from magicanimate.pipelines.pipeline_animation import AnimationPipeline
from magicanimate.utils.util import save_videos_grid
from magicanimate.utils.dist_tools import distributed_init
from accelerate.utils import set_seed

from magicanimate.utils.videoreader import VideoReader

from einops import rearrange

from pathlib import Path


def main(args):

    *_, func_args = inspect.getargvalues(inspect.currentframe())
    func_args = dict(func_args)
    
    config  = OmegaConf.load(args.config)
      
    # Initialize distributed training
    device = torch.device(f"cuda:{args.rank}")
    dist_kwargs = {"rank":args.rank, "world_size":args.world_size, "dist":args.dist}
    
    if config.savename is None:
        time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
        savedir = f"samples/{Path(args.config).stem}-{time_str}"
    else:
        savedir = f"samples/{config.savename}"
        
    if args.dist:
        dist.broadcast_object_list([savedir], 0)
        dist.barrier()
    
    if args.rank == 0:
        os.makedirs(savedir, exist_ok=True)

    inference_config = OmegaConf.load(config.inference_config)
        
    motion_module = config.motion_module
    
    ### >>> create animation pipeline >>> ###
    tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
    if config.pretrained_unet_path:
        unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_unet_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
    else:
        unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
    appearance_encoder = AppearanceEncoderModel.from_pretrained(config.pretrained_appearance_encoder_path, subfolder="appearance_encoder").to(device)
    reference_control_writer = ReferenceAttentionControl(appearance_encoder, do_classifier_free_guidance=True, mode='write', fusion_blocks=config.fusion_blocks)
    reference_control_reader = ReferenceAttentionControl(unet, do_classifier_free_guidance=True, mode='read', fusion_blocks=config.fusion_blocks)
    if config.pretrained_vae_path is not None:
        vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
    else:
        vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae")

    ### Load controlnet
    controlnet   = ControlNetModel.from_pretrained(config.pretrained_controlnet_path)

    unet.enable_xformers_memory_efficient_attention()
    appearance_encoder.enable_xformers_memory_efficient_attention()
    controlnet.enable_xformers_memory_efficient_attention()

    vae.to(torch.float16)
    unet.to(torch.float16)
    text_encoder.to(torch.float16)
    appearance_encoder.to(torch.float16)
    controlnet.to(torch.float16)

    pipeline = AnimationPipeline(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet,
        scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
        # NOTE: UniPCMultistepScheduler
    )

    # 1. unet ckpt
    # 1.1 motion module
    motion_module_state_dict = torch.load(motion_module, map_location="cpu")
    if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
    motion_module_state_dict = motion_module_state_dict['state_dict'] if 'state_dict' in motion_module_state_dict else motion_module_state_dict
    try:
        # extra steps for self-trained models
        state_dict = OrderedDict()
        for key in motion_module_state_dict.keys():
            if key.startswith("module."):
                _key = key.split("module.")[-1]
                state_dict[_key] = motion_module_state_dict[key]
            else:
                state_dict[key] = motion_module_state_dict[key]
        motion_module_state_dict = state_dict
        del state_dict
        missing, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
        assert len(unexpected) == 0
    except:
        _tmp_ = OrderedDict()
        for key in motion_module_state_dict.keys():
            if "motion_modules" in key:
                if key.startswith("unet."):
                    _key = key.split('unet.')[-1]
                    _tmp_[_key] = motion_module_state_dict[key]
                else:
                    _tmp_[key] = motion_module_state_dict[key]
        missing, unexpected = unet.load_state_dict(_tmp_, strict=False)
        assert len(unexpected) == 0
        del _tmp_
    del motion_module_state_dict

    pipeline.to(device)
    ### <<< create validation pipeline <<< ###
    
    random_seeds = config.get("seed", [-1])
    random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
    random_seeds = random_seeds * len(config.source_image) if len(random_seeds) == 1 else random_seeds
    
    # input test videos (either source video/ conditions)
    
    test_videos = config.video_path
    source_images = config.source_image
    num_actual_inference_steps = config.get("num_actual_inference_steps", config.steps)

    # read size, step from yaml file
    sizes = [config.size] * len(test_videos)
    steps = [config.S] * len(test_videos)

    config.random_seed = []
    prompt = n_prompt = ""
    for idx, (source_image, test_video, random_seed, size, step) in tqdm(
        enumerate(zip(source_images, test_videos, random_seeds, sizes, steps)), 
        total=len(test_videos), 
        disable=(args.rank!=0)
    ):
        samples_per_video = []
        samples_per_clip = []
        # manually set random seed for reproduction
        if random_seed != -1: 
            torch.manual_seed(random_seed)
            set_seed(random_seed)
        else:
            torch.seed()
        config.random_seed.append(torch.initial_seed())

        if test_video.endswith('.mp4'):
            control = VideoReader(test_video).read()
            if control[0].shape[0] != size:
                control = [np.array(Image.fromarray(c).resize((size, size))) for c in control]
            if config.max_length is not None:
                control = control[config.offset: (config.offset+config.max_length)]
            control = np.array(control)
        
        if source_image.endswith(".mp4"):
            source_image = np.array(Image.fromarray(VideoReader(source_image).read()[0]).resize((size, size)))
        else:
            source_image = np.array(Image.open(source_image).resize((size, size)))
        H, W, C = source_image.shape
        
        print(f"current seed: {torch.initial_seed()}")
        init_latents = None
        
        # print(f"sampling {prompt} ...")
        original_length = control.shape[0]
        if control.shape[0] % config.L > 0:
            control = np.pad(control, ((0, config.L-control.shape[0] % config.L), (0, 0), (0, 0), (0, 0)), mode='edge')
        generator = torch.Generator(device=torch.device("cuda:0"))
        generator.manual_seed(torch.initial_seed())
        sample = pipeline(
            prompt,
            negative_prompt         = n_prompt,
            num_inference_steps     = config.steps,
            guidance_scale          = config.guidance_scale,
            width                   = W,
            height                  = H,
            video_length            = len(control),
            controlnet_condition    = control,
            init_latents            = init_latents,
            generator               = generator,
            num_actual_inference_steps = num_actual_inference_steps,
            appearance_encoder       = appearance_encoder, 
            reference_control_writer = reference_control_writer,
            reference_control_reader = reference_control_reader,
            source_image             = source_image,
            **dist_kwargs,
        ).videos

        if args.rank == 0:
            source_images = np.array([source_image] * original_length)
            source_images = rearrange(torch.from_numpy(source_images), "t h w c -> 1 c t h w") / 255.0
            samples_per_video.append(source_images)
            
            control = control / 255.0
            control = rearrange(control, "t h w c -> 1 c t h w")
            control = torch.from_numpy(control)
            samples_per_video.append(control[:, :, :original_length])

            samples_per_video.append(sample[:, :, :original_length])
                
            samples_per_video = torch.cat(samples_per_video)

            video_name = os.path.basename(test_video)[:-4]
            source_name = os.path.basename(config.source_image[idx]).split(".")[0]
            save_videos_grid(samples_per_video[-1:], f"{savedir}/videos/{source_name}_{video_name}.mp4")
            save_videos_grid(samples_per_video, f"{savedir}/videos/{source_name}_{video_name}/grid.mp4")

            if config.save_individual_videos:
                save_videos_grid(samples_per_video[1:2], f"{savedir}/videos/{source_name}_{video_name}/ctrl.mp4")
                save_videos_grid(samples_per_video[0:1], f"{savedir}/videos/{source_name}_{video_name}/orig.mp4")
                
        if args.dist:
            dist.barrier()
               
    if args.rank == 0:
        OmegaConf.save(config, f"{savedir}/config.yaml")


def distributed_main(device_id, args):
    args.rank = device_id
    args.device_id = device_id
    if torch.cuda.is_available():
        torch.cuda.set_device(args.device_id)
        torch.cuda.init()
    distributed_init(args)
    main(args)


def run(args):

    if args.dist:
        args.world_size = max(1, torch.cuda.device_count())
        assert args.world_size <= torch.cuda.device_count()

        if args.world_size > 0 and torch.cuda.device_count() > 1:
            port = random.randint(10000, 20000)
            args.init_method = f"tcp://localhost:{port}"
            torch.multiprocessing.spawn(
                fn=distributed_main,
                args=(args,),
                nprocs=args.world_size,
            )
    else:
        main(args)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, required=True)
    parser.add_argument("--dist", action="store_true", required=False)
    parser.add_argument("--rank", type=int, default=0, required=False)
    parser.add_argument("--world_size", type=int, default=1, required=False)

    args = parser.parse_args()
    run(args)