magicanimat / app.py
zcxu-eric's picture
update
8d2200f
raw
history blame
4.33 kB
# Copyright 2023 ByteDance and/or its affiliates.
#
# Copyright (2023) MagicAnimate Authors
#
# ByteDance, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from ByteDance or
# its affiliates is strictly prohibited.
import argparse
import imageio
import numpy as np
import gradio as gr
from PIL import Image
from subprocess import PIPE, run
from demo.animate import MagicAnimate
animator = MagicAnimate()
def animate(reference_image, motion_sequence_state, seed, steps, guidance_scale):
return animator(reference_image, motion_sequence_state, seed, steps, guidance_scale)
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/magic-research/magic-animate" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
</a>
<div>
<h1 >MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;>
<a href="https://arxiv.org/abs/2311.16498"><img src="https://img.shields.io/badge/Arxiv-2311.16498-red"></a>
<a href='https://showlab.github.io/magicanimate'><img src='https://img.shields.io/badge/Project_Page-MagicAnimate-green' alt='Project Page'></a>
<a href='https://github.com/magic-research/magic-animate'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
</div>
</div>
</div>
""")
animation = gr.Video(format="mp4", label="Animation Results", autoplay=True)
with gr.Row():
reference_image = gr.Image(label="Reference Image")
motion_sequence = gr.Video(format="mp4", label="Motion Sequence")
with gr.Column():
random_seed = gr.Textbox(label="Random seed", value=1, info="default: -1")
sampling_steps = gr.Textbox(label="Sampling steps", value=25, info="default: 25")
guidance_scale = gr.Textbox(label="Guidance scale", value=7.5, info="default: 7.5")
submit = gr.Button("Animate")
def read_video(video):
size = int(size)
reader = imageio.get_reader(video)
fps = reader.get_meta_data()['fps']
assert fps == 25.0, f'Expected video fps: 25, but {fps} fps found'
return video
def read_image(image, size=512):
return np.array(Image.fromarray(image).resize((size, size)))
# when user uploads a new video
motion_sequence.upload(
read_video,
motion_sequence,
motion_sequence
)
# when `first_frame` is updated
reference_image.upload(
read_image,
reference_image,
reference_image
)
# when the `submit` button is clicked
submit.click(
animate,
[reference_image, motion_sequence, random_seed, sampling_steps, guidance_scale],
animation
)
# Examples
gr.Markdown("## Examples")
gr.Examples(
examples=[
["inputs/applications/source_image/monalisa.png", "inputs/applications/driving/densepose/running.mp4"],
["inputs/applications/source_image/demo4.png", "inputs/applications/driving/densepose/demo4.mp4"],
["inputs/applications/source_image/0002.png", "inputs/applications/driving/densepose/demo4.mp4"],
["inputs/applications/source_image/dalle2.jpeg", "inputs/applications/driving/densepose/running2.mp4"],
["inputs/applications/source_image/dalle8.jpeg", "inputs/applications/driving/densepose/dancing2.mp4"],
["inputs/applications/source_image/multi1_source.png", "inputs/applications/driving/densepose/multi_dancing.mp4"],
],
inputs=[reference_image, motion_sequence],
outputs=animation,
)
demo.launch(share=True)