automation codes
Browse files- automate/automate.py +29 -0
- automate/run_benchmark.py +288 -0
automate/automate.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from apscheduler.schedulers.blocking import BackgroundScheduler
|
4 |
+
|
5 |
+
|
6 |
+
def run_command(command, shell=True):
|
7 |
+
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=shell)
|
8 |
+
stdout, stderr = process.communicate()
|
9 |
+
|
10 |
+
if process.returncode == 0:
|
11 |
+
print("Command executed successfully")
|
12 |
+
print(stdout.decode())
|
13 |
+
else:
|
14 |
+
print("Command failed")
|
15 |
+
print(stderr.decode())
|
16 |
+
|
17 |
+
|
18 |
+
def run_benchmark():
|
19 |
+
run_command("python run_benchmark.py")
|
20 |
+
|
21 |
+
|
22 |
+
scheduler = BackgroundScheduler()
|
23 |
+
scheduler.add_job(
|
24 |
+
run_benchmark,
|
25 |
+
'cron',
|
26 |
+
day_of_week='sun',
|
27 |
+
hour=0,
|
28 |
+
timezone='UTC')
|
29 |
+
scheduler.start()
|
automate/run_benchmark.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import csv
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
import pickle
|
8 |
+
import openai
|
9 |
+
import pandas as pd
|
10 |
+
from pathlib import Path
|
11 |
+
from tqdm import tqdm
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
from mech.packages.valory.customs.prediction_request import prediction_request
|
14 |
+
from benchmark.utils import get_logger, TokenCounterCallback
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
logger = get_logger(__name__)
|
18 |
+
this_dir = Path(__file__).parent
|
19 |
+
|
20 |
+
|
21 |
+
def tool_map(tool):
|
22 |
+
"""Map the tool name to the tool class."""
|
23 |
+
|
24 |
+
tool_dict = {
|
25 |
+
"prediction-online": prediction_request,
|
26 |
+
"prediction-offline": prediction_request,
|
27 |
+
}
|
28 |
+
|
29 |
+
tool = tool_dict.get(tool, None)
|
30 |
+
|
31 |
+
if tool is None:
|
32 |
+
raise Exception(f"Tool {tool} not found.")
|
33 |
+
else:
|
34 |
+
return tool
|
35 |
+
|
36 |
+
|
37 |
+
def prepare_questions(kwargs):
|
38 |
+
test_questions = json.load(
|
39 |
+
open(this_dir / "olas-predict-benchmark/benchmark/data/autocast/autocast_questions_filtered.json")
|
40 |
+
)
|
41 |
+
with open(
|
42 |
+
this_dir / "olas-predict-benchmark/benchmark/data/autocast/autocast_questions_filtered.pkl", "rb"
|
43 |
+
) as f:
|
44 |
+
url_to_content = pickle.load(f)
|
45 |
+
num_questions = kwargs.pop("num_questions", len(test_questions))
|
46 |
+
|
47 |
+
questions = []
|
48 |
+
for q in test_questions:
|
49 |
+
if q["qtype"] == "t/f" and q["answer"] is not None:
|
50 |
+
questions.append(q)
|
51 |
+
if len(questions) >= num_questions:
|
52 |
+
break
|
53 |
+
|
54 |
+
return questions, url_to_content
|
55 |
+
|
56 |
+
|
57 |
+
def parse_response(response, test_q):
|
58 |
+
try:
|
59 |
+
result = json.loads(response[0])
|
60 |
+
except Exception as e:
|
61 |
+
print("The response is not json-format compatible")
|
62 |
+
print(f"################### response[0] = {response[0]}")
|
63 |
+
test_q["Correct"] = False
|
64 |
+
test_q["prediction"] = None
|
65 |
+
return test_q
|
66 |
+
|
67 |
+
if "p_yes" in result.keys():
|
68 |
+
test_q["p_yes"] = float(result["p_yes"])
|
69 |
+
else:
|
70 |
+
test_q["p_yes"] = None
|
71 |
+
|
72 |
+
if "p_no" in result.keys():
|
73 |
+
test_q["p_no"] = float(result["p_no"])
|
74 |
+
else:
|
75 |
+
test_q["p_no"] = None
|
76 |
+
|
77 |
+
if "confidence" in result.keys():
|
78 |
+
test_q["confidence"] = float(result["confidence"])
|
79 |
+
else:
|
80 |
+
test_q["confidence"] = None
|
81 |
+
|
82 |
+
if "info_utility" in result.keys():
|
83 |
+
test_q["info_utility"] = float(result["info_utility"])
|
84 |
+
else:
|
85 |
+
test_q["info_utility"] = None
|
86 |
+
|
87 |
+
if response[3] is not None:
|
88 |
+
test_q["input_tokens"] = response[3].cost_dict["input_tokens"]
|
89 |
+
test_q["output_tokens"] = response[3].cost_dict["output_tokens"]
|
90 |
+
test_q["total_tokens"] = response[3].cost_dict["total_tokens"]
|
91 |
+
test_q["input_cost"] = response[3].cost_dict["input_cost"]
|
92 |
+
test_q["output_cost"] = response[3].cost_dict["output_cost"]
|
93 |
+
test_q["total_cost"] = response[3].cost_dict["total_cost"]
|
94 |
+
test_q["prompt_response"] = response[1].replace(os.linesep, "")
|
95 |
+
|
96 |
+
if (test_q["p_yes"] is None) or (float(result["p_yes"]) == float(result["p_no"])):
|
97 |
+
test_q["prediction"] = None
|
98 |
+
else:
|
99 |
+
test_q["prediction"] = "yes" if test_q["p_yes"] > test_q["p_no"] else "no"
|
100 |
+
test_q["Correct"] = test_q["prediction"] == test_q["answer"]
|
101 |
+
return test_q
|
102 |
+
|
103 |
+
|
104 |
+
def write_results(csv_file_path):
|
105 |
+
|
106 |
+
results_path = Path(csv_file_path.parent)
|
107 |
+
time_string = csv_file_path.stem.split("_", 1)[-1]
|
108 |
+
|
109 |
+
results_df = pd.read_csv(csv_file_path)
|
110 |
+
num_errors = results_df["error"].count()
|
111 |
+
logger.info(f"Num errors: {str(num_errors)}")
|
112 |
+
results_df = results_df.dropna(subset=["prediction"])
|
113 |
+
grouped_df = results_df.groupby(["tool", "model"]).agg(
|
114 |
+
{
|
115 |
+
"Correct": ["mean", "sum", "count"],
|
116 |
+
"crowd_correct": ["mean"],
|
117 |
+
"input_tokens": ["mean"],
|
118 |
+
"output_tokens": ["mean"],
|
119 |
+
"total_tokens": ["mean"],
|
120 |
+
"input_cost": ["mean"],
|
121 |
+
"output_cost": ["mean"],
|
122 |
+
"total_cost": ["mean"],
|
123 |
+
}
|
124 |
+
)
|
125 |
+
|
126 |
+
grouped_df.columns = ["_".join(col).strip() for col in grouped_df.columns.values]
|
127 |
+
summary_df = grouped_df.reset_index().rename(
|
128 |
+
columns={
|
129 |
+
"Correct_mean": "accuracy",
|
130 |
+
"Correct_sum": "correct",
|
131 |
+
"Correct_count": "total",
|
132 |
+
"crowd_correct_mean": "crowd_accuracy",
|
133 |
+
}
|
134 |
+
)
|
135 |
+
|
136 |
+
logger.info(f"Results:\n\n {results_df}")
|
137 |
+
summary_df.to_csv(results_path / f"summary_{time_string}.csv", index=False)
|
138 |
+
|
139 |
+
|
140 |
+
def run_benchmark(kwargs):
|
141 |
+
"""Start the benchmark tests. If a category flag is provided, run the categories with that mark."""
|
142 |
+
|
143 |
+
logger.info("Running benchmark tests...")
|
144 |
+
|
145 |
+
tools = kwargs.pop("tools")
|
146 |
+
model = kwargs.pop("model")[0]
|
147 |
+
MAX_RETRIES = kwargs.pop("max_retries", 3)
|
148 |
+
questions, url_to_content = prepare_questions(kwargs)
|
149 |
+
logger.info(f"Running {len(questions)} questions for each tool: {tools}")
|
150 |
+
|
151 |
+
results_path = Path("results")
|
152 |
+
if not results_path.exists():
|
153 |
+
results_path.mkdir(exist_ok=True)
|
154 |
+
|
155 |
+
start_time = time.time()
|
156 |
+
time_string = time.strftime("%y%m%d%H%M%S", time.localtime(start_time))
|
157 |
+
csv_file_path = results_path / f"results_{time_string}.csv"
|
158 |
+
|
159 |
+
logger.info("Creating csv files...")
|
160 |
+
with open(csv_file_path, mode="a", newline="") as file:
|
161 |
+
fieldnames = [
|
162 |
+
"prompt",
|
163 |
+
"answer",
|
164 |
+
"tool",
|
165 |
+
"model",
|
166 |
+
"p_yes",
|
167 |
+
"p_no",
|
168 |
+
"confidence",
|
169 |
+
"info_utility",
|
170 |
+
"prediction",
|
171 |
+
"Correct",
|
172 |
+
"input_tokens",
|
173 |
+
"output_tokens",
|
174 |
+
"total_tokens",
|
175 |
+
"input_cost",
|
176 |
+
"output_cost",
|
177 |
+
"total_cost",
|
178 |
+
"prompt_response",
|
179 |
+
"error",
|
180 |
+
"crowd_prediction",
|
181 |
+
"crowd_correct",
|
182 |
+
]
|
183 |
+
writer = csv.DictWriter(file, fieldnames=fieldnames)
|
184 |
+
|
185 |
+
if file.tell() == 0:
|
186 |
+
writer.writeheader()
|
187 |
+
|
188 |
+
for t in tools:
|
189 |
+
logger.info("Loading the tool...")
|
190 |
+
try:
|
191 |
+
tool = tool_map(t)
|
192 |
+
except Exception as e:
|
193 |
+
logger.error(f"Error while loading the tool={tool}")
|
194 |
+
continue
|
195 |
+
correct_answers = 0
|
196 |
+
total_answers = 0
|
197 |
+
for test_question in tqdm(
|
198 |
+
questions, desc=f"Running tool {t}", total=len(questions)
|
199 |
+
):
|
200 |
+
test_q = {
|
201 |
+
"prompt": test_question["question"],
|
202 |
+
"answer": test_question["answer"],
|
203 |
+
"crowd_prediction": test_question["crowd"][-1]["forecast"],
|
204 |
+
"tool": t,
|
205 |
+
"model": model,
|
206 |
+
"counter_callback": TokenCounterCallback(),
|
207 |
+
"prompt_response": None,
|
208 |
+
}
|
209 |
+
|
210 |
+
if kwargs["provide_source_links"]:
|
211 |
+
test_q["source_links"] = test_question["source_links"]
|
212 |
+
test_q["source_links"] = {
|
213 |
+
source_link: url_to_content[source_link]
|
214 |
+
for source_link in test_q["source_links"]
|
215 |
+
}
|
216 |
+
|
217 |
+
crowd_forecast = test_question["crowd"][-1]["forecast"]
|
218 |
+
test_q["crowd_prediction"] = (
|
219 |
+
"yes"
|
220 |
+
if crowd_forecast > 0.5
|
221 |
+
else "no" if crowd_forecast < 0.5 else None
|
222 |
+
)
|
223 |
+
test_q["crowd_correct"] = test_q["crowd_prediction"] == test_q["answer"]
|
224 |
+
|
225 |
+
CURRENT_RETRIES = 0
|
226 |
+
while True:
|
227 |
+
try:
|
228 |
+
response = tool.run(**{**test_q, **kwargs})
|
229 |
+
test_q = parse_response(response, test_q)
|
230 |
+
if test_q["Correct"] == True:
|
231 |
+
correct_answers += 1
|
232 |
+
if test_q["prediction"] is not None:
|
233 |
+
total_answers += 1
|
234 |
+
print(
|
235 |
+
f"===========ACCURACY============== {correct_answers/total_answers*100}%"
|
236 |
+
)
|
237 |
+
break
|
238 |
+
except openai.APIError as e:
|
239 |
+
logger.error(f"Error running benchmark for tool {t}: {e}")
|
240 |
+
CURRENT_RETRIES += 1
|
241 |
+
if CURRENT_RETRIES > MAX_RETRIES:
|
242 |
+
logger.error(
|
243 |
+
f"Max retries reached for tool {t}. Skipping question."
|
244 |
+
)
|
245 |
+
test_q["error"] = e
|
246 |
+
break
|
247 |
+
else:
|
248 |
+
logger.info(
|
249 |
+
f"Retrying tool {t} for question {test_q['prompt']}"
|
250 |
+
)
|
251 |
+
continue
|
252 |
+
|
253 |
+
except Exception as e:
|
254 |
+
logger.error(f"Error running benchmark for tool {t}: {e}")
|
255 |
+
test_q["error"] = e
|
256 |
+
break
|
257 |
+
|
258 |
+
if kwargs["provide_source_links"]:
|
259 |
+
del test_q["source_links"]
|
260 |
+
del test_q["counter_callback"]
|
261 |
+
|
262 |
+
writer.writerow(test_q)
|
263 |
+
|
264 |
+
write_results(csv_file_path)
|
265 |
+
|
266 |
+
end_time = time.time()
|
267 |
+
total_time = end_time - start_time
|
268 |
+
logger.info(f"Total Time: {total_time} seconds")
|
269 |
+
|
270 |
+
|
271 |
+
if __name__ == "__main__":
|
272 |
+
kwargs = {}
|
273 |
+
kwargs["num_questions"] = 10
|
274 |
+
kwargs["tools"] = [
|
275 |
+
"prediction-online",
|
276 |
+
]
|
277 |
+
kwargs["model"] = [
|
278 |
+
"gpt-3.5-turbo-0125",
|
279 |
+
]
|
280 |
+
kwargs["api_keys"] = {}
|
281 |
+
kwargs["api_keys"]["openai"] = os.getenv("OPENAI_API_KEY")
|
282 |
+
kwargs["api_keys"]["anthropic"] = os.getenv("ANTHROPIC_API_KEY")
|
283 |
+
kwargs["api_keys"]["openrouter"] = os.getenv("OPENROUTER_API_KEY")
|
284 |
+
|
285 |
+
kwargs["num_urls"] = 3
|
286 |
+
kwargs["num_words"] = 300
|
287 |
+
kwargs["provide_source_links"] = True
|
288 |
+
run_benchmark(kwargs)
|