File size: 6,348 Bytes
278fab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285f2a6
 
 
278fab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from web3 import Web3
import os
import requests
import time
import pickle
from datetime import datetime, timezone
from functools import partial
import pandas as pd
import pytz
from tqdm import tqdm
from utils import DATA_DIR, TMP_DIR, measure_execution_time
from concurrent.futures import ThreadPoolExecutor

GNOSIS_API_INTERVAL = 0.2  # 5 calls in 1 second
GNOSIS_URL = "https://api.gnosisscan.io/api"
GNOSIS_API_KEY = os.environ.get("GNOSIS_API_KEY", None)
# https://api.gnosisscan.io/api?module=account&action=txlist&address=0x1fe2b09de07475b1027b0c73a5bf52693b31a52e&startblock=36626348&endblock=36626348&page=1&offset=10&sort=asc&apikey=${gnosis_api_key}""

# Connect to Gnosis Chain RPC
w3 = Web3(Web3.HTTPProvider("https://rpc.gnosischain.com"))


def parallelize_timestamp_computation(df: pd.DataFrame, function: callable) -> list:
    """Parallelize the timestamp conversion."""
    tx_hashes = df["tx_hash"].tolist()
    with ThreadPoolExecutor(max_workers=10) as executor:
        results = list(tqdm(executor.map(function, tx_hashes), total=len(tx_hashes)))
    return results


def transform_timestamp_to_datetime(timestamp):
    dt = datetime.fromtimestamp(timestamp, timezone.utc)
    return dt


def get_tx_hash(trader_address, request_block):
    """Function to get the transaction hash from the address and block number"""
    params = {
        "module": "account",
        "action": "txlist",
        "address": trader_address,
        "page": 1,
        "offset": 100,
        "startblock": request_block,
        "endblock": request_block,
        "sort": "asc",
        "apikey": GNOSIS_API_KEY,
    }

    try:
        response = requests.get(GNOSIS_URL, params=params)
        tx_list = response.json()["result"]
        time.sleep(GNOSIS_API_INTERVAL)
        if len(tx_list) > 1:
            raise ValueError("More than one transaction found")
        return tx_list[0]["hash"]
    except Exception as e:
        return None


def add_tx_hash_info(filename: str = "tools.parquet"):
    """Function to add the hash info to the saved tools parquet file"""
    tools = pd.read_parquet(DATA_DIR / filename)
    tools["tx_hash"] = None
    total_errors = 0
    for i, mech_request in tqdm(
        tools.iterrows(), total=len(tools), desc="Adding tx hash"
    ):
        try:
            trader_address = mech_request["trader_address"]
            block_number = mech_request["request_block"]
            tools.at[i, "tx_hash"] = get_tx_hash(
                trader_address=trader_address, request_block=block_number
            )
        except Exception as e:
            print(f"Error with mech request {mech_request}")
            total_errors += 1
            continue

    print(f"Total number of errors = {total_errors}")
    tools.to_parquet(DATA_DIR / filename)


def get_transaction_timestamp(tx_hash: str, web3: Web3):

    try:
        # Get transaction data
        tx = web3.eth.get_transaction(tx_hash)
        # Get block data
        block = web3.eth.get_block(tx["blockNumber"])
        # Get timestamp
        timestamp = block["timestamp"]

        # Convert to datetime
        dt = datetime.fromtimestamp(timestamp, tz=pytz.UTC)

        # return {
        #     "timestamp": timestamp,
        #     "datetime": dt,
        #     "from_address": tx["from"],
        #     "to_address": tx["to"],
        #     "success": True,
        # }
        return dt.strftime("%Y-%m-%d %H:%M:%S")
    except Exception as e:
        print(f"Error getting the timestamp from {tx_hash}")
        return None


@measure_execution_time
def compute_request_time(tools_df: pd.DataFrame) -> pd.DataFrame:
    """Function to compute the request timestamp from the tx hash"""
    # read the local info
    try:
        gnosis_info = pickle.load(open(TMP_DIR / "gnosis_info.pkl", "rb"))
    except Exception:
        print("File not found or not created. Creating a new one")
        gnosis_info = {}

    # any previous information?
    tools_df["request_time"] = tools_df["tx_hash"].map(gnosis_info)

    # Identify tools with missing request_time and fill them
    missing_time_indices = tools_df[tools_df["request_time"].isna()].index
    print(f"length of missing_time_indices = {len(missing_time_indices)}")
    # traverse all tx hashes and get the timestamp of each tx
    partial_mech_request_timestamp = partial(get_transaction_timestamp, web3=w3)
    missing_timestamps = parallelize_timestamp_computation(
        tools_df.loc[missing_time_indices], partial_mech_request_timestamp
    )

    # Update the original DataFrame with the missing timestamps
    for i, timestamp in zip(missing_time_indices, missing_timestamps):
        tools_df.at[i, "request_time"] = timestamp
    # creating other time fields
    tools_df["request_month_year"] = pd.to_datetime(
        tools_df["request_time"]
    ).dt.strftime("%Y-%m")
    tools_df["request_month_year_week"] = (
        pd.to_datetime(tools_df["request_time"])
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    # Update t_map with new timestamps
    new_timestamps = (
        tools_df[["tx_hash", "request_time"]]
        .dropna()
        .set_index("tx_hash")
        .to_dict()["request_time"]
    )
    gnosis_info.update(new_timestamps)
    # saving  gnosis info
    with open(TMP_DIR / "gnosis_info.pkl", "wb") as f:
        pickle.dump(gnosis_info, f)
    return tools_df


def get_account_details(address):
    # gnosis_url = GNOSIS_URL.substitute(gnosis_api_key=GNOSIS_API_KEY, tx_hash=tx_hash)

    params = {
        "module": "account",
        "action": "txlistinternal",
        "address": address,
        #'page': 1,
        #'offset': 100,
        #'startblock': 0,
        #'endblock': 9999999999,
        #'sort': 'asc',
        "apikey": GNOSIS_API_KEY,
    }

    try:
        response = requests.get(GNOSIS_URL, params=params)
        return response.json()
    except Exception as e:
        return {"error": str(e)}


if __name__ == "__main__":
    # tx_data = "0x783BFA045BDE2D0BCD65280D97A29E7BD9E4FDC10985848690C9797E767140F4"
    new_tools = pd.read_parquet(DATA_DIR / "new_tools.parquet")
    new_tools = compute_request_time(new_tools)
    new_tools.to_parquet(DATA_DIR / "new_tools.parquet")
    # result = get_tx_hash("0x1fe2b09de07475b1027b0c73a5bf52693b31a52e", 36626348)
    # print(result)