File size: 13,509 Bytes
04a2c17 b60f995 04a2c17 b60f995 f9ef62b 7652a7b 04a2c17 786c7d5 7652a7b 04a2c17 ac347d2 786c7d5 04a2c17 786c7d5 285f2a6 786c7d5 285f2a6 786c7d5 285f2a6 786c7d5 285f2a6 786c7d5 285f2a6 786c7d5 e01feae 04a2c17 f0e76cb e01feae 786c7d5 e01feae 786c7d5 04a2c17 e01feae 04a2c17 e01feae f0e76cb 04a2c17 e01feae 04a2c17 e01feae 04a2c17 e01feae fd27df2 e01feae 04a2c17 ac347d2 04a2c17 b60f995 c255cf4 786c7d5 c255cf4 b60f995 c255cf4 6992ec1 c255cf4 6992ec1 c255cf4 6992ec1 c255cf4 285f2a6 786c7d5 285f2a6 786c7d5 b60f995 04a2c17 e01feae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import functools
import warnings
from datetime import datetime, timedelta
from typing import Optional, Generator, Callable
import pandas as pd
import requests
from tqdm import tqdm
from typing import List, Dict
from utils import SUBGRAPH_API_KEY, DATA_DIR, TMP_DIR, transform_to_datetime
from web3_utils import (
FPMM_QS_CREATOR,
FPMM_PEARL_CREATOR,
query_omen_xdai_subgraph,
OMEN_SUBGRAPH_URL,
)
from queries import (
FPMMS_QUERY,
ID_FIELD,
DATA_FIELD,
ANSWER_FIELD,
QUERY_FIELD,
TITLE_FIELD,
OUTCOMES_FIELD,
ERROR_FIELD,
QUESTION_FIELD,
FPMMS_FIELD,
)
ResponseItemType = List[Dict[str, str]]
SubgraphResponseType = Dict[str, ResponseItemType]
BATCH_SIZE = 1000
DEFAULT_TO_TIMESTAMP = 2147483647 # around year 2038
DEFAULT_FROM_TIMESTAMP = 0
MAX_UINT_HEX = "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
DEFAULT_FILENAME = "fpmms.parquet"
market_creators_map = {"quickstart": FPMM_QS_CREATOR, "pearl": FPMM_PEARL_CREATOR}
class RetriesExceeded(Exception):
"""Exception to raise when retries are exceeded during data-fetching."""
def __init__(
self, msg="Maximum retries were exceeded while trying to fetch the data!"
):
super().__init__(msg)
def hacky_retry(func: Callable, n_retries: int = 3) -> Callable:
"""Create a hacky retry strategy.
Unfortunately, we cannot use `requests.packages.urllib3.util.retry.Retry`,
because the subgraph does not return the appropriate status codes in case of failure.
Instead, it always returns code 200. Thus, we raise exceptions manually inside `make_request`,
catch those exceptions in the hacky retry decorator and try again.
Finally, if the allowed number of retries is exceeded, we raise a custom `RetriesExceeded` exception.
:param func: the input request function.
:param n_retries: the maximum allowed number of retries.
:return: The request method with the hacky retry strategy applied.
"""
@functools.wraps(func)
def wrapper_hacky_retry(*args, **kwargs) -> SubgraphResponseType:
"""The wrapper for the hacky retry.
:return: a response dictionary.
"""
retried = 0
while retried <= n_retries:
try:
if retried > 0:
warnings.warn(f"Retrying {retried}/{n_retries}...")
return func(*args, **kwargs)
except (ValueError, ConnectionError) as e:
warnings.warn(e.args[0])
finally:
retried += 1
raise RetriesExceeded()
return wrapper_hacky_retry
@hacky_retry
def query_subgraph(url: str, query: str, key: str) -> SubgraphResponseType:
"""Query a subgraph.
Args:
url: the subgraph's URL.
query: the query to be used.
key: the key to use in order to access the required data.
Returns:
a response dictionary.
"""
content = {QUERY_FIELD: query}
headers = {
"Accept": "application/json",
"Content-Type": "application/json",
}
res = requests.post(url, json=content, headers=headers)
if res.status_code != 200:
raise ConnectionError(
"Something went wrong while trying to communicate with the subgraph "
f"(Error: {res.status_code})!\n{res.text}"
)
body = res.json()
if ERROR_FIELD in body.keys():
raise ValueError(f"The given query is not correct: {body[ERROR_FIELD]}")
data = body.get(DATA_FIELD, {}).get(key, None)
if data is None:
raise ValueError(f"Unknown error encountered!\nRaw response: \n{body}")
return data
def transform_fpmmTrades(df: pd.DataFrame) -> pd.DataFrame:
print("Transforming trades dataframe")
# convert creator to address
df["creator"] = df["creator"].apply(lambda x: x["id"])
# normalize fpmm column
fpmm = pd.json_normalize(df["fpmm"])
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
df = pd.concat([df, fpmm], axis=1)
# drop fpmm column
df.drop(["fpmm"], axis=1, inplace=True)
# change creator to creator_address
df.rename(columns={"creator": "trader_address"}, inplace=True)
return df
def create_fpmmTrades(
from_timestamp: int = DEFAULT_FROM_TIMESTAMP,
to_timestamp: int = DEFAULT_TO_TIMESTAMP,
):
"""Create fpmmTrades for all trades."""
print("Getting trades from Quickstart markets")
# Quickstart trades
qs_trades_json = query_omen_xdai_subgraph(
trader_category="quickstart",
from_timestamp=from_timestamp,
to_timestamp=to_timestamp,
fpmm_from_timestamp=from_timestamp,
fpmm_to_timestamp=to_timestamp,
)
print(f"length of the qs_trades_json dataset {len(qs_trades_json)}")
# convert to dataframe
qs_df = pd.DataFrame(qs_trades_json["data"]["fpmmTrades"])
qs_df["market_creator"] = "quickstart"
qs_df = transform_fpmmTrades(qs_df)
# Pearl trades
print("Getting trades from Pearl markets")
pearl_trades_json = query_omen_xdai_subgraph(
trader_category="pearl",
from_timestamp=from_timestamp,
to_timestamp=DEFAULT_TO_TIMESTAMP,
fpmm_from_timestamp=from_timestamp,
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
)
print(f"length of the pearl_trades_json dataset {len(pearl_trades_json)}")
# convert to dataframe
pearl_df = pd.DataFrame(pearl_trades_json["data"]["fpmmTrades"])
pearl_df["market_creator"] = "pearl"
pearl_df = transform_fpmmTrades(pearl_df)
return pd.concat([qs_df, pearl_df], ignore_index=True)
def fpmms_fetcher(trader_category: str) -> Generator[ResponseItemType, int, None]:
"""An indefinite fetcher for the FPMMs."""
omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
print(f"omen_subgraph = {omen_subgraph}")
if trader_category == "pearl":
creator_id = FPMM_PEARL_CREATOR
else: # quickstart
creator_id = FPMM_QS_CREATOR
while True:
fpmm_id = yield
fpmms_query = FPMMS_QUERY.substitute(
creator=creator_id,
fpmm_id=fpmm_id,
fpmms_field=FPMMS_FIELD,
first=BATCH_SIZE,
id_field=ID_FIELD,
answer_field=ANSWER_FIELD,
question_field=QUESTION_FIELD,
outcomes_field=OUTCOMES_FIELD,
title_field=TITLE_FIELD,
)
print(f"markets query = {fpmms_query}")
yield query_subgraph(omen_subgraph, fpmms_query, FPMMS_FIELD)
def fetch_qs_fpmms() -> pd.DataFrame:
"""Fetch all the fpmms of the creator."""
latest_id = ""
fpmms = []
trader_category = "quickstart"
print(f"Getting markets for {trader_category}")
fetcher = fpmms_fetcher(trader_category)
for _ in tqdm(fetcher, unit="fpmms", unit_scale=BATCH_SIZE):
batch = fetcher.send(latest_id)
if len(batch) == 0:
break
latest_id = batch[-1].get(ID_FIELD, "")
if latest_id == "":
raise ValueError(f"Unexpected data format retrieved: {batch}")
fpmms.extend(batch)
return pd.DataFrame(fpmms)
def fetch_pearl_fpmms() -> pd.DataFrame:
"""Fetch all the fpmms of the creator."""
latest_id = ""
fpmms = []
trader_category = "pearl"
print(f"Getting markets for {trader_category}")
fetcher = fpmms_fetcher(trader_category)
for _ in tqdm(fetcher, unit="fpmms", unit_scale=BATCH_SIZE):
batch = fetcher.send(latest_id)
if len(batch) == 0:
break
latest_id = batch[-1].get(ID_FIELD, "")
if latest_id == "":
raise ValueError(f"Unexpected data format retrieved: {batch}")
fpmms.extend(batch)
return pd.DataFrame(fpmms)
def get_answer(fpmm: pd.Series) -> str:
"""Get an answer from its index, using Series of an FPMM."""
return fpmm[QUESTION_FIELD][OUTCOMES_FIELD][fpmm[ANSWER_FIELD]]
def transform_fpmms(fpmms: pd.DataFrame) -> pd.DataFrame:
"""Transform an FPMMS dataframe."""
transformed = fpmms.dropna()
transformed = transformed.drop_duplicates([ID_FIELD])
transformed = transformed.loc[transformed[ANSWER_FIELD] != MAX_UINT_HEX]
transformed.loc[:, ANSWER_FIELD] = (
transformed[ANSWER_FIELD].str.slice(-1).astype(int)
)
transformed.loc[:, ANSWER_FIELD] = transformed.apply(get_answer, axis=1)
transformed = transformed.drop(columns=[QUESTION_FIELD])
return transformed
def etl(filename: Optional[str] = None) -> pd.DataFrame:
"""Fetch, process, store and return the markets as a Dataframe."""
qs_fpmms = fetch_qs_fpmms()
qs_fpmms = transform_fpmms(qs_fpmms)
qs_fpmms["market_creator"] = "quickstart"
print(f"Results for the market creator quickstart. Len = {len(qs_fpmms)}")
pearl_fpmms = fetch_pearl_fpmms()
pearl_fpmms = transform_fpmms(pearl_fpmms)
pearl_fpmms["market_creator"] = "pearl"
print(f"Results for the market creator pearl. Len = {len(pearl_fpmms)}")
fpmms = pd.concat([qs_fpmms, pearl_fpmms], ignore_index=True)
if filename:
fpmms.to_parquet(DATA_DIR / filename, index=False)
return fpmms
def read_global_trades_file() -> pd.DataFrame:
try:
trades_filename = "fpmmTrades.parquet"
fpmms_trades = pd.read_parquet(TMP_DIR / trades_filename)
except FileNotFoundError:
print("Error: fpmmTrades.parquet not found. No market creator added")
return
return fpmms_trades
def add_market_creator(tools: pd.DataFrame) -> None:
# Check if fpmmTrades.parquet is in the same directory
fpmms_trades = read_global_trades_file()
tools["market_creator"] = ""
# traverse the list of traders
tools_no_market_creator = 0
traders_list = list(tools.trader_address.unique())
for trader_address in traders_list:
market_creator = ""
try:
trades = fpmms_trades[fpmms_trades["trader_address"] == trader_address]
market_creator = trades.iloc[0]["market_creator"] # first value is enough
except Exception:
print(f"ERROR getting the market creator of {trader_address}")
tools_no_market_creator += 1
continue
# update
tools.loc[tools["trader_address"] == trader_address, "market_creator"] = (
market_creator
)
# filter those tools where we don't have market creator info
tools = tools.loc[tools["market_creator"] != ""]
print(f"Number of tools with no market creator info = {tools_no_market_creator}")
return tools
def fpmmTrades_etl(
trades_filename: str, from_timestamp: int, to_timestamp: int = DEFAULT_TO_TIMESTAMP
) -> None:
print("Generating the trades file")
try:
fpmmTrades = create_fpmmTrades(
from_timestamp=from_timestamp, to_timestamp=to_timestamp
)
except FileNotFoundError:
print(f"Error creating {trades_filename} file .")
# make sure trader_address is in the columns
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
# lowercase and strip creator_address
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
fpmmTrades.to_parquet(DATA_DIR / trades_filename, index=False)
return
def check_current_week_data(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Function to check if all current weeks data is present, if not, then add the missing data from previous file"""
# Get current date
now = datetime.now()
# Get start of the current week (Monday)
start_of_week = now - timedelta(days=now.weekday())
start_of_week = start_of_week.replace(hour=0, minute=0, second=0, microsecond=0)
print(f"start of the week = {start_of_week}")
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creationTimestamp"])
trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date
trades_df["creation_date"] = pd.to_datetime(trades_df["creation_date"])
# Check dataframe
min_date = min(trades_df.creation_date)
if min_date > start_of_week:
# missing data of current week in the trades file
fpmms_trades = read_global_trades_file()
# get missing data
missing_data = fpmms_trades[
(fpmms_trades["creation_date"] >= start_of_week)
& (fpmms_trades["creation_date"] < min_date)
]
merge_df = pd.concat([trades_df, missing_data], ignore_index=True)
merge_df.drop_duplicates("id", keep="last", inplace=True)
return merge_df
# no update needed
return trades_df
if __name__ == "__main__":
etl("all_fpmms.parquet")
|