File size: 11,251 Bytes
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964692a
04a2c17
 
 
 
 
544f140
04a2c17
 
 
b60f995
278fab8
04a2c17
 
 
c255cf4
04a2c17
786c7d5
 
 
5f5eb85
 
 
 
 
dbb4d06
3cfd212
 
 
 
 
 
 
 
964692a
 
 
 
5f5eb85
04a2c17
 
 
 
 
 
 
 
 
786c7d5
04a2c17
 
 
 
 
ac347d2
04a2c17
960332d
 
 
786c7d5
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
5f5eb85
 
04a2c17
 
 
5f5eb85
04a2c17
b60f995
 
 
 
 
 
04a2c17
 
 
b60f995
 
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964692a
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964692a
 
 
 
 
 
 
 
 
278fab8
 
 
 
964692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04a2c17
 
 
 
 
5f5eb85
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9382590
964692a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae57283
c255cf4
 
 
 
964692a
 
 
 
9382590
964692a
 
 
 
 
 
9382590
964692a
 
9382590
964692a
9382590
964692a
 
 
 
04a2c17
 
278fab8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#   -*- coding: utf-8 -*-
#   ------------------------------------------------------------------------------
#
#     Copyright 2023 Valory AG
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
#
#   ------------------------------------------------------------------------------

import json
from typing import (
    Optional,
    List,
    Dict,
    Union,
    Any,
)
import pandas as pd
import requests
from datetime import datetime
from gnosis_timestamps import transform_timestamp_to_datetime
from requests.adapters import HTTPAdapter
from tqdm import tqdm
from urllib3 import Retry
from markets import add_market_creator
from concurrent.futures import ThreadPoolExecutor, as_completed
from web3_utils import (
    N_IPFS_RETRIES,
)
from utils import (
    clean,
    BLOCK_FIELD,
    limit_text,
    DATA_DIR,
    JSON_DATA_DIR,
    MechEvent,
    MechEventName,
    MechRequest,
    MechResponse,
    EVENT_TO_MECH_STRUCT,
    REQUEST_ID,
    HTTP,
    HTTPS,
    get_result_values,
    get_vote,
    get_win_probability,
    get_prediction_values,
)

CONTRACTS_PATH = "contracts"
MECH_TO_INFO = {
    # this block number is when the creator had its first tx ever, and after this mech's creation
    "0xff82123dfb52ab75c417195c5fdb87630145ae81": ("old_mech_abi.json", 28911547),
    # this block number is when this mech was created
    "0x77af31de935740567cf4ff1986d04b2c964a786a": ("new_mech_abi.json", 30776879),
}
# optionally set the latest block to stop searching for the delivered events

EVENT_ARGUMENTS = "args"
DATA = "data"
IPFS_LINKS_SERIES_NAME = "ipfs_links"
BACKOFF_FACTOR = 1
STATUS_FORCELIST = [404, 500, 502, 503, 504]
DEFAULT_FILENAME = "tools.parquet"
ABI_ERROR = "The event signature did not match the provided ABI"
# HTTP_TIMEOUT = 10
# Increasing when ipfs is slow
HTTP_TIMEOUT = 15

IRRELEVANT_TOOLS = [
    "openai-text-davinci-002",
    "openai-text-davinci-003",
    "openai-gpt-3.5-turbo",
    "openai-gpt-4",
    "stabilityai-stable-diffusion-v1-5",
    "stabilityai-stable-diffusion-xl-beta-v2-2-2",
    "stabilityai-stable-diffusion-512-v2-1",
    "stabilityai-stable-diffusion-768-v2-1",
    "deepmind-optimization-strong",
    "deepmind-optimization",
]
# this is how frequently we will keep a snapshot of the progress so far in terms of blocks' batches
# for example, the value 1 means that for every `BLOCKS_CHUNK_SIZE` blocks that we search,
#  we also store the snapshot
SNAPSHOT_RATE = 10
NUM_WORKERS = 10
GET_CONTENTS_BATCH_SIZE = 1000


class TimestampedRetry(Retry):
    def increment(self, *args, **kwargs):
        print(f"Retry attempt at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        return super().increment(*args, **kwargs)


def create_session() -> requests.Session:
    """Create a session with a retry strategy."""
    session = requests.Session()
    retry_strategy = TimestampedRetry(
        total=N_IPFS_RETRIES,
        backoff_factor=BACKOFF_FACTOR,
        status_forcelist=STATUS_FORCELIST,
    )
    adapter = HTTPAdapter(max_retries=retry_strategy)
    for protocol in (HTTP, HTTPS):
        session.mount(protocol, adapter)

    return session


def request(
    session: requests.Session, url: str, timeout: int = HTTP_TIMEOUT
) -> Optional[requests.Response]:
    """Perform a request with a session."""
    try:
        response = session.get(url, timeout=timeout)
        response.raise_for_status()
    except requests.exceptions.HTTPError as exc:
        tqdm.write(f"HTTP error occurred: {exc}.")
    except Exception as exc:
        tqdm.write(f"Unexpected error occurred: {exc}.")
    else:
        return response
    return None


def parse_ipfs_response(
    session: requests.Session,
    url: str,
    event: MechEvent,
    event_name: MechEventName,
    response: requests.Response,
) -> Optional[Dict[str, str]]:
    """Parse a response from IPFS."""
    try:
        return response.json()
    except requests.exceptions.JSONDecodeError:
        # this is a workaround because the `metadata.json` file was introduced and removed multiple times
        if event_name == MechEvent.REQUEST and url != event.ipfs_request_link:
            url = event.ipfs_request_link
            response = request(session, url)
            if response is None:
                tqdm.write(f"Skipping {event=}.")
                return None

            try:
                return response.json()
            except requests.exceptions.JSONDecodeError:
                pass

    tqdm.write(f"Failed to parse response into json for {url=}.")
    return None


def parse_ipfs_tools_content(
    raw_content: Dict[str, str], event: MechEvent, event_name: MechEventName
) -> Optional[Union[MechRequest, MechResponse]]:
    """Parse tools content from IPFS."""
    struct = EVENT_TO_MECH_STRUCT.get(event_name)
    raw_content[REQUEST_ID] = str(event.requestId)
    raw_content[BLOCK_FIELD] = str(event.for_block)
    raw_content["sender"] = str(event.sender)

    try:
        mech_response = struct(**raw_content)
    except (ValueError, TypeError, KeyError):
        tqdm.write(f"Could not parse {limit_text(str(raw_content))}")
        return None

    if event_name == MechEventName.REQUEST and mech_response.tool in IRRELEVANT_TOOLS:
        return None

    return mech_response


def parse_json_events(json_events: dict, keys_to_traverse: List[int]) -> pd.DataFrame:
    """Function to parse the mech info in a json format"""
    all_records = []
    for key in keys_to_traverse:
        try:
            json_input = json_events[key]
            output = {}
            output["request_id"] = json_input["requestId"]
            output["request_block"] = json_input["blockNumber"]
            output["request_time"] = transform_timestamp_to_datetime(
                int(json_input["blockTimestamp"])
            )
            output["tx_hash"] = json_input["transactionHash"]
            output["prompt_request"] = json_input["ipfsContents"]["prompt"]
            output["tool"] = json_input["ipfsContents"]["tool"]
            output["nonce"] = json_input["ipfsContents"]["nonce"]
            output["trader_address"] = json_input["sender"]
            output["deliver_block"] = json_input["deliver"]["blockNumber"]
            error_value, error_message, prediction_params = get_result_values(
                json_input["deliver"]["ipfsContents"]["result"]
            )
            error_message_value = json_input.get("error_message", error_message)
            output["error"] = error_value
            output["error_message"] = error_message_value
            output["prompt_response"] = json_input["deliver"]["ipfsContents"]["prompt"]
            output["mech_address"] = json_input["deliver"]["sender"]
            p_yes_value, p_no_value, confidence_value, info_utility_value = (
                get_prediction_values(prediction_params)
            )
            output["p_yes"] = p_yes_value
            output["p_no"] = p_no_value
            output["confidence"] = confidence_value
            output["info_utility"] = info_utility_value
            output["vote"] = get_vote(p_yes_value, p_no_value)
            output["win_probability"] = get_win_probability(p_yes_value, p_no_value)
            all_records.append(output)
        except Exception as e:
            print(e)
            print(f"Error parsing the key ={key}. Noted as error")
            output["error"] = 1
            output["error_message"] = "Response parsing error"
            output["p_yes"] = None
            output["p_no"] = None
            output["confidence"] = None
            output["info_utility"] = None
            output["vote"] = None
            output["win_probability"] = None
            all_records.append(output)

    return pd.DataFrame.from_dict(all_records, orient="columns")


def transform_request(contents: pd.DataFrame) -> pd.DataFrame:
    """Transform the requests dataframe."""
    return clean(contents)


def transform_deliver(contents: pd.DataFrame) -> pd.DataFrame:
    """Transform the delivers dataframe."""
    unpacked_result = pd.json_normalize(contents.result)
    # # drop result column if it exists
    if "result" in unpacked_result.columns:
        unpacked_result.drop(columns=["result"], inplace=True)

    # drop prompt column if it exists
    if "prompt" in unpacked_result.columns:
        unpacked_result.drop(columns=["prompt"], inplace=True)

    # rename prompt column to prompt_deliver
    unpacked_result.rename(columns={"prompt": "prompt_deliver"}, inplace=True)
    contents = pd.concat((contents, unpacked_result), axis=1)

    if "result" in contents.columns:
        contents.drop(columns=["result"], inplace=True)

    if "prompt" in contents.columns:
        contents.drop(columns=["prompt"], inplace=True)

    return clean(contents)


def parse_store_json_events_parallel(json_events: Dict[str, Any], output_filename: str):
    total_nr_events = len(json_events)
    ids_to_traverse = list(json_events.keys())
    print(f"Parsing {total_nr_events} events")
    contents = []
    with ThreadPoolExecutor(max_workers=NUM_WORKERS) as executor:
        futures = []
        for i in range(0, total_nr_events, GET_CONTENTS_BATCH_SIZE):
            futures.append(
                executor.submit(
                    parse_json_events,
                    json_events,
                    ids_to_traverse[i : i + GET_CONTENTS_BATCH_SIZE],
                )
            )

        for future in tqdm(
            as_completed(futures),
            total=len(futures),
            desc=f"Fetching json contents",
        ):
            current_mech_contents = future.result()
            contents.append(current_mech_contents)

    tools = pd.concat(contents, ignore_index=True)
    print(f"Adding market creators info. Length of the tools file = {len(tools)}")
    tools = add_market_creator(tools)
    print(
        f"Length of the tools dataframe after adding market creators info= {len(tools)}"
    )
    print(tools.info())
    try:
        if "result" in tools.columns:
            tools = tools.drop(columns=["result"])
        tools.to_parquet(DATA_DIR / output_filename, index=False)
    except Exception as e:
        print(f"Failed to write tools data: {e}")

    return tools


def generate_tools_file(input_filename: str, output_filename: str):
    """Function to parse the json mech events and generate the parquet tools file"""
    try:
        with open(JSON_DATA_DIR / input_filename, "r") as file:
            file_contents = json.load(file)
            parse_store_json_events_parallel(file_contents, output_filename)
    except Exception as e:
        print(f"An Exception happened while parsing the json events {e}")


if __name__ == "__main__":

    generate_tools_file()