File size: 9,096 Bytes
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
278fab8
 
 
 
 
 
 
 
 
786c7d5
 
 
 
 
 
 
 
 
 
 
 
b60f995
786c7d5
 
960332d
 
f9ef62b
 
 
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278fab8
786c7d5
 
 
278fab8
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285f2a6
 
 
786c7d5
 
 
 
278fab8
786c7d5
 
 
 
 
 
 
 
 
 
ac8ae1f
 
 
 
 
 
 
 
786c7d5
ac8ae1f
786c7d5
 
 
 
 
 
 
 
 
f9ef62b
786c7d5
 
 
 
 
 
 
 
 
 
285f2a6
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9ef62b
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285f2a6
786c7d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import sys
import pickle
import gc
import time
import requests
from functools import partial
from string import Template
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from collections import defaultdict
from tqdm import tqdm
from web3 import Web3
from typing import Any, Optional
from web3.types import BlockParams
from utils import (
    JSON_DATA_DIR,
    DATA_DIR,
    SUBGRAPH_API_KEY,
    to_content,
    SUBGRAPH_URL,
    HIST_DIR,
    TMP_DIR,
)
from queries import conditional_tokens_gc_user_query, omen_xdai_trades_query
import pandas as pd

REDUCE_FACTOR = 0.25
SLEEP = 0.5
QUERY_BATCH_SIZE = 1000
FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557"
LATEST_BLOCK: Optional[int] = None
LATEST_BLOCK_NAME: BlockParams = "latest"
BLOCK_DATA_NUMBER = "number"
BLOCKS_CHUNK_SIZE = 10_000
N_IPFS_RETRIES = 4
N_RPC_RETRIES = 100
RPC_POLL_INTERVAL = 0.05
SUBGRAPH_POLL_INTERVAL = 0.05
IPFS_POLL_INTERVAL = 0.2  # 5 calls per second
OMEN_SUBGRAPH_URL = Template(
    """https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz"""
)

headers = {
    "Accept": "application/json, multipart/mixed",
    "Content-Type": "application/json",
}


def parse_args() -> str:
    """Parse the arguments and return the RPC."""
    if len(sys.argv) != 2:
        raise ValueError("Expected the RPC as a positional argument.")
    return sys.argv[1]


def read_abi(abi_path: str) -> str:
    """Read and return the wxDAI contract's ABI."""
    with open(abi_path) as abi_file:
        return abi_file.read()


def update_block_request_map(block_request_id_map: dict) -> None:
    print("Saving block request id map info")
    with open(JSON_DATA_DIR / "block_request_id_map.pickle", "wb") as handle:
        pickle.dump(block_request_id_map, handle, protocol=pickle.HIGHEST_PROTOCOL)


def reduce_window(contract_instance, event, from_block, batch_size, latest_block):
    """Dynamically reduce the batch size window."""
    keep_fraction = 1 - REDUCE_FACTOR
    events_filter = contract_instance.events[event].build_filter()
    events_filter.fromBlock = from_block
    batch_size = int(batch_size * keep_fraction)
    events_filter.toBlock = min(from_block + batch_size, latest_block)
    tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.")
    time.sleep(SLEEP)
    return events_filter, batch_size


def block_number_to_timestamp(block_number: int, web3: Web3) -> str:
    """Convert a block number to a timestamp."""
    block = web3.eth.get_block(block_number)
    timestamp = datetime.utcfromtimestamp(block["timestamp"])
    try:
        timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S")
        timestamp = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f")
    except Exception as e:
        timestamp = datetime.utcfromtimestamp(block["timestamp"])
    return timestamp.strftime("%Y-%m-%d %H:%M:%S")


def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list:
    """Parallelize the timestamp conversion."""
    block_numbers = df["request_block"].tolist()
    with ThreadPoolExecutor(max_workers=10) as executor:
        results = list(
            tqdm(executor.map(function, block_numbers), total=len(block_numbers))
        )
    return results


def updating_timestamps(rpc: str, tools_filename: str):
    web3 = Web3(Web3.HTTPProvider(rpc))

    tools = pd.read_parquet(TMP_DIR / tools_filename)

    # Convert block number to timestamp
    print("Converting block number to timestamp")
    t_map = pickle.load(open(TMP_DIR / "t_map.pkl", "rb"))
    tools["request_time"] = tools["request_block"].map(t_map)

    no_data = tools["request_time"].isna().sum()
    print(f"Total rows with no request time info = {no_data}")

    # Identify tools with missing request_time and fill them
    missing_time_indices = tools[tools["request_time"].isna()].index
    if not missing_time_indices.empty:
        partial_block_number_to_timestamp = partial(
            block_number_to_timestamp, web3=web3
        )
        missing_timestamps = parallelize_timestamp_conversion(
            tools.loc[missing_time_indices], partial_block_number_to_timestamp
        )

        # Update the original DataFrame with the missing timestamps
        for i, timestamp in zip(missing_time_indices, missing_timestamps):
            tools.at[i, "request_time"] = timestamp

    tools["request_month_year"] = pd.to_datetime(tools["request_time"]).dt.strftime(
        "%Y-%m"
    )
    tools["request_month_year_week"] = (
        pd.to_datetime(tools["request_time"])
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )

    # Save the tools data after the updates on the content
    print(f"Updating file {tools_filename} with timestamps")
    tools.to_parquet(TMP_DIR / tools_filename, index=False)

    # Update t_map with new timestamps
    new_timestamps = (
        tools[["request_block", "request_time"]]
        .dropna()
        .set_index("request_block")
        .to_dict()["request_time"]
    )
    t_map.update(new_timestamps)

    # filtering old timestamps
    cutoff_date = datetime(2024, 9, 9)
    filtered_map = {
        k: v
        for k, v in t_map.items()
        if datetime.strptime(v, "%Y-%m-%d %H:%M:%S") < cutoff_date
    }

    with open(DATA_DIR / "t_map.pkl", "wb") as f:
        pickle.dump(filtered_map, f)

    # clean and release all memory
    del tools
    del t_map
    gc.collect()


def query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
    """Query the subgraph."""

    subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
    all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
    userPositions_id_gt = ""
    while True:
        query = conditional_tokens_gc_user_query.substitute(
            id=creator.lower(),
            first=QUERY_BATCH_SIZE,
            userPositions_id_gt=userPositions_id_gt,
        )
        content_json = {"query": query}
        # print("sending query to subgraph")
        res = requests.post(subgraph, headers=headers, json=content_json)
        result_json = res.json()
        # print(f"result = {result_json}")
        user_data = result_json.get("data", {}).get("user", {})

        if not user_data:
            break

        user_positions = user_data.get("userPositions", [])

        if user_positions:
            all_results["data"]["user"]["userPositions"].extend(user_positions)
            userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
        else:
            break

    if len(all_results["data"]["user"]["userPositions"]) == 0:
        return {"data": {"user": None}}

    return all_results


def query_omen_xdai_subgraph(
    trader_category: str,
    from_timestamp: float,
    to_timestamp: float,
    fpmm_from_timestamp: float,
    fpmm_to_timestamp: float,
) -> dict[str, Any]:
    """Query the subgraph."""

    omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY)
    print(f"omen_subgraph = {omen_subgraph}")
    grouped_results = defaultdict(list)
    id_gt = ""
    if trader_category == "quickstart":
        creator_id = FPMM_QS_CREATOR.lower()
    else:  # pearl
        creator_id = FPMM_PEARL_CREATOR.lower()

    while True:
        query = omen_xdai_trades_query.substitute(
            fpmm_creator=creator_id,
            creationTimestamp_gte=int(from_timestamp),
            creationTimestamp_lte=int(to_timestamp),
            fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
            fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
            first=QUERY_BATCH_SIZE,
            id_gt=id_gt,
        )
        print(f"omen query={query}")
        content_json = to_content(query)

        res = requests.post(omen_subgraph, headers=headers, json=content_json)
        result_json = res.json()
        # print(f"result = {result_json}")
        user_trades = result_json.get("data", {}).get("fpmmTrades", [])

        if not user_trades:
            break

        for trade in user_trades:
            fpmm_id = trade.get("fpmm", {}).get("id")
            grouped_results[fpmm_id].append(trade)

        id_gt = user_trades[len(user_trades) - 1]["id"]

    all_results = {
        "data": {
            "fpmmTrades": [
                trade
                for trades_list in grouped_results.values()
                for trade in trades_list
            ]
        }
    }

    return all_results


# def get_earliest_block(event_name: MechEventName) -> int:
#     """Get the earliest block number to use when filtering for events."""
#     filename = gen_event_filename(event_name)
#     if not os.path.exists(DATA_DIR / filename):
#         return 0

#     df = pd.read_parquet(DATA_DIR / filename)
#     block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}"
#     earliest_block = int(df[block_field].max())
#     # clean and release all memory
#     del df
#     gc.collect()
#     return earliest_block