File size: 4,365 Bytes
04a2c17 8cb40a4 04a2c17 bd172d3 04a2c17 8cb40a4 278fab8 8cb40a4 278fab8 8cb40a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import pandas as pd
import gradio as gr
from typing import List
import plotly.express as px
from tabs.tool_win import sort_key
HEIGHT = 600
WIDTH = 1000
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the error data for the given tools and calculates the error percentage."""
error_total = (
error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
.agg({"total_requests": "sum", "1": "sum", "0": "sum"})
.reset_index()
)
error_total["error_perc"] = (error_total["1"] / error_total["total_requests"]) * 100
error_total.columns = error_total.columns.astype(str)
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
return error_total
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_all_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_all_df["request_month_year_week"] = pd.Categorical(
error_all_df["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_all_df = error_all_df.sort_values("request_month_year_week")
fig = px.bar(
error_all_df,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
error_tool = error_df[error_df["tool"] == tool]
error_tool.columns = error_tool.columns.astype(str)
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_tool["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_tool["request_month_year_week"] = pd.Categorical(
error_tool["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_tool = error_tool.sort_values("request_month_year_week")
fig = px.bar(
error_tool,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
error_week = error_df[error_df["request_month_year_week"] == week]
error_week.columns = error_week.columns.astype(str)
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
fig = px.bar(
error_week,
x="tool",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
},
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
|