File size: 4,365 Bytes
04a2c17
 
 
8cb40a4
 
04a2c17
 
bd172d3
 
04a2c17
 
8cb40a4
 
 
 
278fab8
8cb40a4
 
278fab8
8cb40a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import gradio as gr
from typing import List
import plotly.express as px
from tabs.tool_win import sort_key


HEIGHT = 600
WIDTH = 1000


def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the error data for the given tools and calculates the error percentage."""
    error_total = (
        error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
        .agg({"total_requests": "sum", "1": "sum", "0": "sum"})
        .reset_index()
    )
    error_total["error_perc"] = (error_total["1"] / error_total["total_requests"]) * 100
    error_total.columns = error_total.columns.astype(str)
    error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
    return error_total


def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:

    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        error_all_df["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    error_all_df["request_month_year_week"] = pd.Categorical(
        error_all_df["request_month_year_week"],
        categories=sorted_categories,
        ordered=True,
    )

    # Sort the DataFrame based on the new categorical column
    error_all_df = error_all_df.sort_values("request_month_year_week")

    fig = px.bar(
        error_all_df,
        x="request_month_year_week",
        y="error_perc",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Error Percentage",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
    error_tool = error_df[error_df["tool"] == tool]
    error_tool.columns = error_tool.columns.astype(str)
    error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))

    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        error_tool["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    error_tool["request_month_year_week"] = pd.Categorical(
        error_tool["request_month_year_week"],
        categories=sorted_categories,
        ordered=True,
    )

    # Sort the DataFrame based on the new categorical column
    error_tool = error_tool.sort_values("request_month_year_week")

    fig = px.bar(
        error_tool,
        x="request_month_year_week",
        y="error_perc",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Error Percentage %",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
    error_week = error_df[error_df["request_month_year_week"] == week]
    error_week.columns = error_week.columns.astype(str)
    error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))

    fig = px.bar(
        error_week,
        x="tool",
        y="error_perc",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
        },
    )
    fig.update_layout(
        xaxis_title="Tool",
        yaxis_title="Error Percentage %",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)