File size: 4,228 Bytes
3950f25
 
 
 
de6972c
1b7dc53
9e988e1
1b7dc53
cdbc522
 
 
3950f25
 
1b7dc53
 
 
 
 
3950f25
 
22e9be8
ab87186
a702e0c
ab87186
 
 
cdbc522
 
3950f25
 
 
 
 
 
 
 
 
d0991fd
 
 
4ea95e9
d0991fd
cdbc522
 
 
a702e0c
1e9fc2b
cdbc522
 
795d0fe
cdbc522
 
 
3950f25
 
9e988e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3950f25
 
 
 
 
 
 
de6972c
3950f25
 
 
2003311
3950f25
 
 
 
a702e0c
 
 
 
 
3950f25
ab87186
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import pandas as pd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from seaborn import FacetGrid
import plotly.express as px
import plotly.graph_objs as go


HEIGHT = 600
WIDTH = 1000


def plot_daily_invalid_trades_plotly(invalid_trades: pd.DataFrame):
    fig = px.histogram(invalid_trades, x="creation_date")
    return gr.Plot(value=fig)


def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame):
    """Function to paint the distribution of daily invalid trades, no matter which market"""
    sns.set_theme(palette="viridis")
    plt.figure(figsize=(25, 10))
    plot2 = sns.histplot(data=invalid_trades, x="creation_date", kde=True)
    plt.xlabel("Creation date")
    plt.ylabel("Daily number of invalid trades")
    plt.xticks(rotation=45, ha="right")
    daily_trades_fig = plot2.get_figure()
    return gr.Plot(value=daily_trades_fig)


def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame):
    """Function to paint the number of invalid markets over time"""
    daily_invalid_markets = (
        invalid_trades.groupby("creation_date")
        .agg(trades_count=("title", "count"), nr_markets=("title", "nunique"))
        .reset_index()
    )
    daily_invalid_markets["creation_date"] = daily_invalid_markets[
        "creation_date"
    ].astype(str)
    daily_invalid_markets.columns = daily_invalid_markets.columns.astype(str)

    return gr.LinePlot(
        value=daily_invalid_markets,
        x="creation_date",
        y="nr_markets",
        y_title="nr_markets",
        interactive=True,
        show_actions_button=True,
        tooltip=["creation_date", "nr_markets", "trades_count"],
        height=HEIGHT,
        width=WIDTH,
    )


def plotly_daily_nr_invalid_markets(invalid_trades: pd.DataFrame) -> gr.Plot:

    daily_invalid_markets = (
        invalid_trades.groupby("creation_date")
        .agg(trades_count=("title", "count"), nr_markets=("title", "nunique"))
        .reset_index()
    )
    # Create the Plotly figure
    fig = go.Figure()

    # Add the line trace
    fig.add_trace(
        go.Scatter(
            x=daily_invalid_markets["creation_date"],
            y=daily_invalid_markets["nr_markets"],
            mode="lines+markers",
            name="Number of Markets",
            hovertemplate="<b>Date:</b> %{x}<br>"
            + "<b>Number of Markets:</b> %{y}<br>"
            + "<b>Trades Count:</b> %{text}<br>",
            text=daily_invalid_markets["trades_count"],  # Used in the tooltip
        )
    )

    # Customize the layout
    fig.update_layout(
        title="Daily Invalid Markets",
        xaxis_title="Market Creation Date",
        yaxis_title="Number of Markets",
        xaxis=dict(
            tickangle=-45,  # Rotate x-axis labels by -45 degrees
            tickfont=dict(size=10),  # Adjust font size if needed
        ),
        width=1000,  # Adjusted for better fit on laptop screens
        height=600,  # Adjusted for better fit on laptop screens
        hovermode="closest",  # Improve tooltip behavior
        # template="plotly_white",  # Optional: set a cleaner background
    )
    return gr.Plot(
        value=fig,
    )


def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame):
    """Function to paint the number of invalid trades that the same market accummulates"""
    cat = invalid_trades["title"]
    codes, uniques = pd.factorize(cat)

    # add the IDs as a new column to the original dataframe
    invalid_trades["title_id"] = codes
    plot: FacetGrid = sns.displot(invalid_trades, x="title_id")
    plt.xlabel("market id")
    plt.ylabel("Total number of invalid trades by market")
    plt.title("Distribution of invalid trades per market")
    return gr.Plot(value=plot.figure)


def plot_top_invalid_markets(invalid_trades: pd.DataFrame):
    """Function to paint the top markets with the highest number of invalid trades"""
    top_invalid_markets: pd.DataFrame = (
        invalid_trades.title.value_counts().reset_index()
    )
    print(top_invalid_markets.head(5))
    top_invalid_markets = top_invalid_markets.head(5)
    top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True)
    return gr.DataFrame(top_invalid_markets)