File size: 4,600 Bytes
04a2c17
 
 
c255cf4
 
04a2c17
 
55b63e0
 
04a2c17
 
c255cf4
 
 
 
 
285f2a6
 
 
c255cf4
 
 
 
 
 
 
 
 
 
 
0b04461
 
 
 
 
 
 
 
 
 
 
c255cf4
6992ec1
c255cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6992ec1
 
 
c255cf4
 
 
 
 
0b04461
 
c255cf4
 
 
 
 
 
 
0b04461
c255cf4
 
 
 
 
 
 
 
0b04461
c255cf4
0b04461
c255cf4
0b04461
 
c255cf4
 
 
 
 
0b04461
 
 
c255cf4
0b04461
 
 
 
c255cf4
0b04461
 
c255cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import pandas as pd
import gradio as gr
from typing import List
from tabs.metrics import tool_metric_choices
import plotly.express as px


HEIGHT = 600
WIDTH = 1000


def prepare_tools(tools: pd.DataFrame) -> pd.DataFrame:
    tools["request_time"] = pd.to_datetime(tools["request_time"])
    tools = tools.sort_values(by="request_time", ascending=True)

    tools["request_month_year_week"] = (
        pd.to_datetime(tools["request_time"])
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    # preparing the tools graph
    # adding the total
    tools_all = tools.copy(deep=True)
    tools_all["market_creator"] = "all"
    # merging both dataframes
    tools = pd.concat([tools, tools_all], ignore_index=True)
    tools = tools.sort_values(by="request_time", ascending=True)
    return tools


def get_overall_winning_rate_by_market(wins_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning rate data for the given tools and calculates the winning percentage."""
    overall_wins = (
        wins_df.groupby(["request_month_year_week", "market_creator"], sort=False)
        .agg({"0": "sum", "1": "sum", "win_perc": "mean", "total_request": "sum"})
        .rename(columns={"0": "losses", "1": "wins"})
        .reset_index()
    )
    return overall_wins


def sort_key(date_str):
    month, day, year = date_str.split("-")
    month_order = [
        "Jan",
        "Feb",
        "Mar",
        "Apr",
        "May",
        "Jun",
        "Jul",
        "Aug",
        "Sep",
        "Oct",
        "Nov",
        "Dec",
    ]
    month_num = month_order.index(month) + 1
    day = int(day)
    year = int(year)
    return (year, month_num, day)  # year, month, day


def integrated_plot_tool_winnings_overall_per_market_by_week(
    winning_df: pd.DataFrame,
    winning_selector: str = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
) -> gr.Plot:

    # get the column name from the metric name
    column_name = tool_metric_choices.get(winning_selector)

    wins_df = get_overall_winning_rate_by_market(winning_df)
    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        wins_df["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    wins_df["request_month_year_week"] = pd.Categorical(
        wins_df["request_month_year_week"], categories=sorted_categories, ordered=True
    )

    # Sort the DataFrame based on the new categorical column
    wins_df = wins_df.sort_values("request_month_year_week")

    fig = px.bar(
        wins_df,
        x="request_month_year_week",
        y=column_name,
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )
    fig.update_layout(
        xaxis_title="Week",
        yaxis_title=winning_selector,
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)


def integrated_tool_winnings_by_tool_per_market(
    wins_df: pd.DataFrame, tool: str
) -> gr.Plot:

    tool_wins_df = wins_df[wins_df["tool"] == tool]
    # Sort the unique values of request_month_year_week
    sorted_categories = sorted(
        tool_wins_df["request_month_year_week"].unique(), key=sort_key
    )
    # Create a categorical type with a specific order
    tool_wins_df["request_month_year_week"] = pd.Categorical(
        tool_wins_df["request_month_year_week"],
        categories=sorted_categories,
        ordered=True,
    )

    # Sort the DataFrame based on the new categorical column
    wins_df = wins_df.sort_values("request_month_year_week")
    fig = px.bar(
        tool_wins_df,
        x="request_month_year_week",
        y="win_perc",
        color="market_creator",
        barmode="group",
        color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
        category_orders={
            "market_creator": ["pearl", "quickstart", "all"],
            "request_month_year_week": sorted_categories,
        },
    )

    fig.update_layout(
        xaxis_title="Week",
        yaxis_title="Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %",
        legend=dict(yanchor="top", y=0.5),
    )
    fig.update_layout(width=WIDTH, height=HEIGHT)
    fig.update_xaxes(tickformat="%b %d\n%Y")
    return gr.Plot(value=fig)