File size: 8,221 Bytes
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
import pandas as pd


HEIGHT=600
WIDTH=1000

def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Prepares the trades data for analysis."""
    trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])
    trades_df['creation_timestamp'] = trades_df['creation_timestamp'].dt.tz_convert('UTC')
    trades_df['month_year'] = trades_df['creation_timestamp'].dt.to_period('M').astype(str)
    trades_df['month_year_week'] = trades_df['creation_timestamp'].dt.to_period('W').astype(str)
    trades_df['winning_trade'] = trades_df['winning_trade'].astype(int)
    return trades_df


def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall trades data for the given tools and calculates the winning percentage."""
    trades_count = trades_df.groupby('month_year_week').size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={'0': 'trades'}, inplace=True)
    return trades_count

def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
    """Gets the overall winning trades data for the given tools and calculates the winning percentage."""
    winning_trades = trades_df.groupby(['month_year_week'])['winning_trade'].sum() / trades_df.groupby(['month_year_week'])['winning_trade'].count() * 100
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ['month_year_week', 'winning_trade']
    return winning_trades

def plot_trade_details(trade_detail: str, trades_df: pd.DataFrame) -> gr.LinePlot:
    """Plots the trade details for the given trade detail."""
    if trade_detail == "mech calls":
        # this is to filter out the data before 2023-09-01
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["num_mech_calls"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="mech_calls")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="mech_calls",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "mech_calls"],
            height=HEIGHT,
            width=WIDTH
        )
    
    if trade_detail == "collateral amount":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["collateral_amount"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="collateral_amount")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="collateral_amount",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "collateral_amount"],
            height=HEIGHT,
            width=WIDTH
        )

    if trade_detail == "earnings":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["earnings"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="earnings")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="earnings",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "earnings"],
            height=HEIGHT,
            width=WIDTH
        )
    
    if trade_detail == "net earnings":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["net_earnings"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="net_earnings")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="net_earnings",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "net_earnings"],
            height=HEIGHT,
            width=WIDTH
        )        
    
    if trade_detail == "ROI":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["roi"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="ROI")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="ROI",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "ROI"],
            height=HEIGHT,
            width=WIDTH
        )    
    
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"],
        height=HEIGHT,
        width=WIDTH
    )

def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
    """Plots the winning trades data for the given tools and calculates the winning percentage."""
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="winning_trade",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "winning_trade"],
        height=HEIGHT,
        width=WIDTH
    )