File size: 20,036 Bytes
04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 cebb53d 04a2c17 ac347d2 04a2c17 ac347d2 04a2c17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# -*- coding: utf-8 -*-
# ------------------------------------------------------------------------------
#
# Copyright 2023 Valory AG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ------------------------------------------------------------------------------
import time
import requests
import datetime
import pandas as pd
from collections import defaultdict
from typing import Any, Union
from string import Template
from enum import Enum
from tqdm import tqdm
import numpy as np
from pathlib import Path
IRRELEVANT_TOOLS = [
"openai-text-davinci-002",
"openai-text-davinci-003",
"openai-gpt-3.5-turbo",
"openai-gpt-4",
"stabilityai-stable-diffusion-v1-5",
"stabilityai-stable-diffusion-xl-beta-v2-2-2",
"stabilityai-stable-diffusion-512-v2-1",
"stabilityai-stable-diffusion-768-v2-1",
"deepmind-optimization-strong",
"deepmind-optimization",
]
QUERY_BATCH_SIZE = 1000
DUST_THRESHOLD = 10000000000000
INVALID_ANSWER_HEX = (
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
INVALID_ANSWER = -1
FPMM_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
DEFAULT_FROM_TIMESTAMP = 0
DEFAULT_TO_TIMESTAMP = 2147483647
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DEFAULT_MECH_FEE = 0.01
DUST_THRESHOLD = 10000000000000
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"
class MarketState(Enum):
"""Market state"""
OPEN = 1
PENDING = 2
FINALIZING = 3
ARBITRATING = 4
CLOSED = 5
def __str__(self) -> str:
"""Prints the market status."""
return self.name.capitalize()
class MarketAttribute(Enum):
"""Attribute"""
NUM_TRADES = "Num_trades"
WINNER_TRADES = "Winner_trades"
NUM_REDEEMED = "Num_redeemed"
INVESTMENT = "Investment"
FEES = "Fees"
MECH_CALLS = "Mech_calls"
MECH_FEES = "Mech_fees"
EARNINGS = "Earnings"
NET_EARNINGS = "Net_earnings"
REDEMPTIONS = "Redemptions"
ROI = "ROI"
def __str__(self) -> str:
"""Prints the attribute."""
return self.value
def __repr__(self) -> str:
"""Prints the attribute representation."""
return self.name
@staticmethod
def argparse(s: str) -> "MarketAttribute":
"""Performs string conversion to MarketAttribute."""
try:
return MarketAttribute[s.upper()]
except KeyError as e:
raise ValueError(f"Invalid MarketAttribute: {s}") from e
ALL_TRADES_STATS_DF_COLS = [
"trader_address",
"trade_id",
"creation_timestamp",
"title",
"market_status",
"collateral_amount",
"outcome_index",
"trade_fee_amount",
"outcomes_tokens_traded",
"current_answer",
"is_invalid",
"winning_trade",
"earnings",
"redeemed",
"redeemed_amount",
"num_mech_calls",
"mech_fee_amount",
"net_earnings",
"roi",
]
SUMMARY_STATS_DF_COLS = [
"trader_address",
"num_trades",
"num_winning_trades",
"num_redeemed",
"total_investment",
"total_trade_fees",
"num_mech_calls",
"total_mech_fees",
"total_earnings",
"total_redeemed_amount",
"total_net_earnings",
"total_net_earnings_wo_mech_fees",
"total_roi",
"total_roi_wo_mech_fees",
"mean_mech_calls_per_trade",
"mean_mech_fee_amount_per_trade",
]
headers = {
"Accept": "application/json, multipart/mixed",
"Content-Type": "application/json",
}
omen_xdai_trades_query = Template(
"""
{
fpmmTrades(
where: {
type: Buy,
fpmm_: {
creator: "${fpmm_creator}"
creationTimestamp_gte: "${fpmm_creationTimestamp_gte}",
creationTimestamp_lt: "${fpmm_creationTimestamp_lte}"
},
creationTimestamp_gte: "${creationTimestamp_gte}",
creationTimestamp_lte: "${creationTimestamp_lte}"
id_gt: "${id_gt}"
}
first: ${first}
orderBy: id
orderDirection: asc
) {
id
title
collateralToken
outcomeTokenMarginalPrice
oldOutcomeTokenMarginalPrice
type
creator {
id
}
creationTimestamp
collateralAmount
collateralAmountUSD
feeAmount
outcomeIndex
outcomeTokensTraded
transactionHash
fpmm {
id
outcomes
title
answerFinalizedTimestamp
currentAnswer
isPendingArbitration
arbitrationOccurred
openingTimestamp
condition {
id
}
}
}
}
"""
)
conditional_tokens_gc_user_query = Template(
"""
{
user(id: "${id}") {
userPositions(
first: ${first}
where: {
id_gt: "${userPositions_id_gt}"
}
orderBy: id
) {
balance
id
position {
id
conditionIds
}
totalBalance
wrappedBalance
}
}
}
"""
)
def _to_content(q: str) -> dict[str, Any]:
"""Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
finalized_query = {
"query": q,
"variables": None,
"extensions": {"headers": None},
}
return finalized_query
def _query_omen_xdai_subgraph(
from_timestamp: float,
to_timestamp: float,
fpmm_from_timestamp: float,
fpmm_to_timestamp: float,
) -> dict[str, Any]:
"""Query the subgraph."""
url = "https://api.thegraph.com/subgraphs/name/protofire/omen-xdai"
grouped_results = defaultdict(list)
id_gt = ""
while True:
query = omen_xdai_trades_query.substitute(
fpmm_creator=FPMM_CREATOR.lower(),
creationTimestamp_gte=int(from_timestamp),
creationTimestamp_lte=int(to_timestamp),
fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
first=QUERY_BATCH_SIZE,
id_gt=id_gt,
)
content_json = _to_content(query)
res = requests.post(url, headers=headers, json=content_json)
result_json = res.json()
user_trades = result_json.get("data", {}).get("fpmmTrades", [])
if not user_trades:
break
for trade in user_trades:
fpmm_id = trade.get("fpmm", {}).get("id")
grouped_results[fpmm_id].append(trade)
id_gt = user_trades[len(user_trades) - 1]["id"]
all_results = {
"data": {
"fpmmTrades": [
trade
for trades_list in grouped_results.values()
for trade in trades_list
]
}
}
return all_results
def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
"""Query the subgraph."""
url = "https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc"
all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
userPositions_id_gt = ""
while True:
query = conditional_tokens_gc_user_query.substitute(
id=creator.lower(),
first=QUERY_BATCH_SIZE,
userPositions_id_gt=userPositions_id_gt,
)
content_json = {"query": query}
res = requests.post(url, headers=headers, json=content_json)
result_json = res.json()
user_data = result_json.get("data", {}).get("user", {})
if not user_data:
break
user_positions = user_data.get("userPositions", [])
if user_positions:
all_results["data"]["user"]["userPositions"].extend(user_positions)
userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
else:
break
if len(all_results["data"]["user"]["userPositions"]) == 0:
return {"data": {"user": None}}
return all_results
def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
"""Convert hex to int"""
if isinstance(x, float):
return np.nan
elif isinstance(x, str):
if x == INVALID_ANSWER_HEX:
return -1
else:
return int(x, 16)
def wei_to_unit(wei: int) -> float:
"""Converts wei to currency unit."""
return wei / 10**18
def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
"""Returns whether the user has redeemed the position."""
user_positions = user_json["data"]["user"]["userPositions"]
outcomes_tokens_traded = int(fpmmTrade["outcomeTokensTraded"])
condition_id = fpmmTrade["fpmm.condition.id"]
for position in user_positions:
position_condition_ids = position["position"]["conditionIds"]
balance = int(position["balance"])
if condition_id in position_condition_ids:
if balance == 0:
return True
# return early
return False
return False
def create_fpmmTrades(rpc: str):
"""Create fpmmTrades for all trades."""
trades_json = _query_omen_xdai_subgraph(
from_timestamp=DEFAULT_FROM_TIMESTAMP,
to_timestamp=DEFAULT_TO_TIMESTAMP,
fpmm_from_timestamp=DEFAULT_FROM_TIMESTAMP,
fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
)
# convert to dataframe
df = pd.DataFrame(trades_json["data"]["fpmmTrades"])
# convert creator to address
df["creator"] = df["creator"].apply(lambda x: x["id"])
# normalize fpmm column
fpmm = pd.json_normalize(df["fpmm"])
fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
df = pd.concat([df, fpmm], axis=1)
# drop fpmm column
df.drop(["fpmm"], axis=1, inplace=True)
# change creator to creator_address
df.rename(columns={"creator": "trader_address"}, inplace=True)
# save to csv
df.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
return df
def prepare_profitalibity_data(rpc: str):
"""Prepare data for profitalibity analysis."""
# Check if tools.py is in the same directory
try:
# load tools.csv
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
# make sure creator_address is in the columns
assert "trader_address" in tools.columns, "trader_address column not found"
# lowercase and strip creator_address
tools["trader_address"] = tools["trader_address"].str.lower().str.strip()
# drop duplicates
tools.drop_duplicates(inplace=True)
print("tools.parquet loaded")
except FileNotFoundError:
print("tools.parquet not found. Please run tools.py first.")
return
# Check if fpmmTrades.csv is in the same directory
try:
# load fpmmTrades.csv
fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
print("fpmmTrades.parquet loaded")
except FileNotFoundError:
print("fpmmTrades.parquet not found. Creating fpmmTrades.parquet...")
fpmmTrades = create_fpmmTrades(rpc)
fpmmTrades.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
# make sure trader_address is in the columns
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
# lowercase and strip creator_address
fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()
return fpmmTrades, tools
def determine_market_status(trade, current_answer):
"""Determine the market status of a trade."""
if current_answer is np.nan and time.time() >= int(trade["fpmm.openingTimestamp"]):
return MarketState.PENDING
elif current_answer == np.nan:
return MarketState.OPEN
elif trade["fpmm.isPendingArbitration"]:
return MarketState.ARBITRATING
elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
return MarketState.FINALIZING
return MarketState.CLOSED
def analyse_trader(
trader_address: str, fpmmTrades: pd.DataFrame, tools: pd.DataFrame
) -> pd.DataFrame:
"""Analyse a trader's trades"""
# Filter trades and tools for the given trader
trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
tools_usage = tools[tools["trader_address"] == trader_address]
# Prepare the DataFrame
trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
if trades.empty:
return trades_df
# Fetch user's conditional tokens gc graph
try:
user_json = _query_conditional_tokens_gc_subgraph(trader_address)
except Exception as e:
print(f"Error fetching user data: {e}")
return trades_df
# Iterate over the trades
for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
try:
if not trade['fpmm.currentAnswer']:
print(f"Skipping trade {i} because currentAnswer is NaN")
continue
# Parsing and computing shared values
creation_timestamp_utc = datetime.datetime.fromtimestamp(
int(trade["creationTimestamp"]), tz=datetime.timezone.utc
)
collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
fee_amount = wei_to_unit(float(trade["feeAmount"]))
outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
earnings, winner_trade = (0, False)
redemption = _is_redeemed(user_json, trade)
current_answer = trade["fpmm.currentAnswer"]
# Determine market status
market_status = determine_market_status(trade, current_answer)
# Skip non-closed markets
if market_status != MarketState.CLOSED:
print(
f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
)
continue
current_answer = convert_hex_to_int(current_answer)
# Compute invalidity
is_invalid = current_answer == INVALID_ANSWER
# Compute earnings and winner trade status
if is_invalid:
earnings = collateral_amount
winner_trade = False
elif int(trade["outcomeIndex"]) == current_answer:
earnings = outcome_tokens_traded
winner_trade = True
# Compute mech calls
num_mech_calls = (
tools_usage["prompt_request"].apply(lambda x: trade["title"] in x).sum()
)
net_earnings = (
earnings
- fee_amount
- (num_mech_calls * DEFAULT_MECH_FEE)
- collateral_amount
)
# Assign values to DataFrame
trades_df.loc[i] = {
"trader_address": trader_address,
"trade_id": trade["id"],
"market_status": market_status.name,
"creation_timestamp": creation_timestamp_utc,
"title": trade["title"],
"collateral_amount": collateral_amount,
"outcome_index": trade["outcomeIndex"],
"trade_fee_amount": fee_amount,
"outcomes_tokens_traded": outcome_tokens_traded,
"current_answer": current_answer,
"is_invalid": is_invalid,
"winning_trade": winner_trade,
"earnings": earnings,
"redeemed": redemption,
"redeemed_amount": earnings if redemption else 0,
"num_mech_calls": num_mech_calls,
"mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
"net_earnings": net_earnings,
"roi": net_earnings / (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),
}
except Exception as e:
print(f"Error processing trade {i}: {e}")
continue
return trades_df
def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFrame:
"""Analyse all creators."""
all_traders = []
for trader in tqdm(
trades["trader_address"].unique(),
total=len(trades["trader_address"].unique()),
desc="Analysing creators",
):
all_traders.append(analyse_trader(trader, trades, tools))
# concat all creators
all_creators_df = pd.concat(all_traders)
return all_creators_df
def summary_analyse(df):
"""Summarise profitability analysis."""
# Ensure DataFrame is not empty
if df.empty:
return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)
# Group by trader_address
grouped = df.groupby("trader_address")
# Create summary DataFrame
summary_df = grouped.agg(
num_trades=("trader_address", "size"),
num_winning_trades=("winning_trade", lambda x: float((x).sum())),
num_redeemed=("redeemed", lambda x: float(x.sum())),
total_investment=("collateral_amount", "sum"),
total_trade_fees=("trade_fee_amount", "sum"),
num_mech_calls=("num_mech_calls", "sum"),
total_mech_fees=("mech_fee_amount", "sum"),
total_earnings=("earnings", "sum"),
total_redeemed_amount=("redeemed_amount", "sum"),
total_net_earnings=("net_earnings", "sum"),
)
# Calculating additional columns
summary_df["total_roi"] = (
summary_df["total_net_earnings"] / summary_df["total_investment"]
)
summary_df["mean_mech_calls_per_trade"] = (
summary_df["num_mech_calls"] / summary_df["num_trades"]
)
summary_df["mean_mech_fee_amount_per_trade"] = (
summary_df["total_mech_fees"] / summary_df["num_trades"]
)
summary_df["total_net_earnings_wo_mech_fees"] = (
summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
)
summary_df["total_roi_wo_mech_fees"] = (
summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
)
# Resetting index to include trader_address
summary_df.reset_index(inplace=True)
return summary_df
def run_profitability_analysis(rpc):
"""Create all trades analysis."""
# load dfs from csv for analysis
print("Preparing data...")
fpmmTrades, tools = prepare_profitalibity_data(rpc)
tools['trader_address'] = tools['trader_address'].str.lower()
# all trades profitability df
print("Analysing trades...")
all_trades_df = analyse_all_traders(fpmmTrades, tools)
# summarize profitability df
print("Summarising trades...")
summary_df = summary_analyse(all_trades_df)
# save to csv
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
print("Done!")
return all_trades_df, summary_df
if __name__ == "__main__":
rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
run_profitability_analysis(rpc)
|