File size: 10,068 Bytes
6058372
04a2c17
 
6058372
6ecf2db
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6058372
6ecf2db
 
 
 
 
 
 
 
 
 
 
 
 
bab948b
5a096cc
 
 
 
6058372
5a096cc
6058372
eeb064d
6058372
 
 
b5967d8
6058372
 
5a096cc
 
6e05e6b
 
 
 
 
 
5a096cc
eeb064d
6058372
6e05e6b
6058372
6e05e6b
ff9989e
 
5a096cc
 
 
bab948b
04a2c17
ff9989e
 
3d5e7d2
ff9989e
 
711723d
ff9989e
04a2c17
711723d
04a2c17
 
711723d
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d5e7d2
04a2c17
 
 
 
 
 
 
 
 
 
3d5e7d2
 
04a2c17
 
 
 
3d5e7d2
04a2c17
 
 
3d5e7d2
04a2c17
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
from datetime import datetime, timedelta
import gradio as gr
import pandas as pd
import duckdb
import logging
from tabs.trades import (
    prepare_trades, 
    get_overall_trades, 
    get_overall_winning_trades,
    plot_trades_by_week,
    plot_winning_trades_by_week,
    plot_trade_details  
)
from tabs.tool_win import (
    get_tool_winning_rate,
    get_overall_winning_rate,
    plot_tool_winnings_overall,
    plot_tool_winnings_by_tool
)
from tabs.error import (
    get_error_data, 
    get_error_data_overall,
    plot_error_data,
    plot_tool_error_data,
    plot_week_error_data
)
from tabs.about import about_olas_predict


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger

logger = get_logger()

def get_last_one_month_data():
    """
    Get the last one month data from the tools.parquet file
    """
    logger.info("Getting last one month data")
    con = duckdb.connect(':memory:')
    one_months_ago = (datetime.now() - timedelta(days=60)).strftime('%Y-%m-%d')
    
    # Query to fetch data from all_trades_profitability.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    WHERE creation_timestamp >= '{one_months_ago}'
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got last one month data from all_trades_profitability.parquet")

    query1 = f"""
    SELECT *
    FROM read_parquet('./data/tools.parquet')
    WHERE request_time >= '{one_months_ago}'
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got last one month data from tools.parquet")

    con.close()

    return df1, df2

        
def prepare_data():
    """
    Prepare the data for the dashboard
    """
    tools_df, trades_df = get_last_one_month_data()

    tools_df['request_time'] = pd.to_datetime(tools_df['request_time'])
    trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])

    trades_df = prepare_trades(trades_df)
    return tools_df, trades_df

tools_df, trades_df = prepare_data()


demo = gr.Blocks()


INC_TOOLS = [
    'prediction-online', 
    'prediction-offline', 
    'claude-prediction-online', 
    'claude-prediction-offline', 
    'prediction-offline-sme',
    'prediction-online-sme',
    'prediction-request-rag',
    'prediction-request-reasoning',
    'prediction-url-cot-claude', 
    'prediction-request-rag-claude',
    'prediction-request-reasoning-claude'
]


error_df = get_error_data(
    tools_df=tools_df,
    inc_tools=INC_TOOLS
)
error_overall_df = get_error_data_overall(
    error_df=error_df
)
winning_rate_df = get_tool_winning_rate(
    tools_df=tools_df, 
    inc_tools=INC_TOOLS
)
winning_rate_overall_df = get_overall_winning_rate(
    wins_df=winning_rate_df
)
trades_count_df = get_overall_trades(
    trades_df=trades_df
)
trades_winning_rate_df = get_overall_winning_trades(
    trades_df=trades_df
)

with demo:
    gr.HTML("<h1>Olas Predict Actual Performance</h1>")
    gr.Markdown("This app shows the actual performance of Olas Predict tools on the live market.")

    with gr.Tabs():
        with gr.TabItem("🔥Trades Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot of number of trades by week")
            with gr.Row():
                trades_by_week_plot = plot_trades_by_week(
                    trades_df=trades_count_df
                )
            with gr.Row():
                gr.Markdown("# Plot of winning trades by week")
            with gr.Row():
                winning_trades_by_week_plot = plot_winning_trades_by_week(
                    trades_df=trades_winning_rate_df
                )
            with gr.Row():
                gr.Markdown("# Plot of trade details")
            with gr.Row():
                trade_details_selector = gr.Dropdown(
                    label="Select a trade", 
                    choices=[
                        "mech calls",
                        "collateral amount",
                        "earnings",
                        "net earnings",
                        "ROI"
                    ],
                    value="mech calls"
                )
            with gr.Row():
                trade_details_plot = plot_trade_details(
                    trade_detail="mech calls",
                    trades_df=trades_df
                )
            
            def update_trade_details(trade_detail):
                return plot_trade_details(
                    trade_detail=trade_detail,
                    trades_df=trades_df
                )

            trade_details_selector.change(
                update_trade_details, 
                inputs=trade_details_selector, 
                outputs=trade_details_plot
            )

            with gr.Row():
                trade_details_selector
            with gr.Row():
                trade_details_plot

        with gr.TabItem("🚀 Tool Winning Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot showing overall winning rate")

            with gr.Row():
                winning_selector = gr.Dropdown(
                    label="Select Metric", 
                    choices=['losses', 'wins', 'total_request', 'win_perc'], 
                    value='win_perc',
                )

            with gr.Row():
                winning_plot = plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df,
                    winning_selector="win_perc"
                )

            def update_tool_winnings_overall_plot(winning_selector):
                return plot_tool_winnings_overall(
                    wins_df=winning_rate_overall_df,
                    winning_selector=winning_selector
                )

            winning_selector.change(
                update_tool_winnings_overall_plot,
                inputs=winning_selector, 
                outputs=winning_plot
            )

            with gr.Row():
                winning_selector
            with gr.Row():
                winning_plot

            with gr.Row():
                gr.Markdown("# Plot showing winning rate by tool")
            
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", 
                    choices=INC_TOOLS, 
                    value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_winnings_by_tool_plot = plot_tool_winnings_by_tool(
                    wins_df=winning_rate_df,
                    tool=INC_TOOLS[0]
                )

            def update_tool_winnings_by_tool_plot(tool):
                return plot_tool_winnings_by_tool(
                    wins_df=winning_rate_df,
                    tool=tool
                )

            sel_tool.change(
                update_tool_winnings_by_tool_plot,
                inputs=sel_tool, 
                outputs=tool_winnings_by_tool_plot
            )

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_winnings_by_tool_plot

        with gr.TabItem("🏥 Tool Error Dashboard"):
            with gr.Row():
                gr.Markdown("# Plot showing overall error")
            with gr.Row():
                error_overall_plot = plot_error_data(
                    error_all_df=error_overall_df
                )
            with gr.Row():
                gr.Markdown("# Plot showing error by tool")
            with gr.Row():
                sel_tool = gr.Dropdown(
                    label="Select a tool", 
                    choices=INC_TOOLS, 
                    value=INC_TOOLS[0]
                )

            with gr.Row():
                tool_error_plot = plot_tool_error_data(
                    error_df=error_df,
                    tool=INC_TOOLS[0]
                )


            def update_tool_error_plot(tool):
                return plot_tool_error_data(
                    error_df=error_df,
                    tool=tool
                )

            sel_tool.change(
                update_tool_error_plot, 
                inputs=sel_tool, 
                outputs=tool_error_plot
            )
            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot

            with gr.Row():
                gr.Markdown("# Plot showing error by week")

            with gr.Row():
                choices = error_overall_df['request_month_year_week'].unique().tolist()
                # sort the choices by the latest week to be on the top
                choices = sorted(choices)
                sel_week = gr.Dropdown(
                    label="Select a week", 
                    choices=choices, 
                    value=choices[-1]
                    )

            with gr.Row():
                week_error_plot = plot_week_error_data(
                    error_df=error_df,
                    week=choices[-1]
                )

            def update_week_error_plot(selected_week):
                return plot_week_error_data(
                    error_df=error_df,
                    week=selected_week
                )

            sel_tool.change(update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot)
            sel_week.change(update_week_error_plot, inputs=sel_week, outputs=week_error_plot)

            with gr.Row():
                sel_tool
            with gr.Row():
                tool_error_plot
            with gr.Row():
                sel_week
            with gr.Row():
                week_error_plot

        with gr.TabItem("ℹ️ About"):
            with gr.Accordion("About Olas Predict"):
                gr.Markdown(about_olas_predict)

demo.queue(default_concurrency_limit=40).launch()