File size: 4,960 Bytes
04a2c17 8cb40a4 04a2c17 bd172d3 04a2c17 8cb40a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import pandas as pd
import gradio as gr
from typing import List
import plotly.express as px
from tabs.tool_win import sort_key
HEIGHT = 600
WIDTH = 1000
def get_error_data_by_market(
tools_df: pd.DataFrame, inc_tools: List[str]
) -> pd.DataFrame:
"""Gets the error data for the given tools and calculates the error percentage."""
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
error = (
tools_inc.groupby(
["tool", "request_month_year_week", "market_creator", "error"], sort=False
)
.size()
.unstack()
.fillna(0)
.reset_index()
)
error["error_perc"] = (error[1] / (error[0] + error[1])) * 100
error["total_requests"] = error[0] + error[1]
return error
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the error data for the given tools and calculates the error percentage."""
error_total = (
error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
.agg({"total_requests": "sum", 1: "sum", 0: "sum"})
.reset_index()
)
error_total["error_perc"] = (error_total[1] / error_total["total_requests"]) * 100
error_total.columns = error_total.columns.astype(str)
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
return error_total
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_all_df["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_all_df["request_month_year_week"] = pd.Categorical(
error_all_df["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_all_df = error_all_df.sort_values("request_month_year_week")
fig = px.bar(
error_all_df,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
error_tool = error_df[error_df["tool"] == tool]
error_tool.columns = error_tool.columns.astype(str)
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
# Sort the unique values of request_month_year_week
sorted_categories = sorted(
error_tool["request_month_year_week"].unique(), key=sort_key
)
# Create a categorical type with a specific order
error_tool["request_month_year_week"] = pd.Categorical(
error_tool["request_month_year_week"],
categories=sorted_categories,
ordered=True,
)
# Sort the DataFrame based on the new categorical column
error_tool = error_tool.sort_values("request_month_year_week")
fig = px.bar(
error_tool,
x="request_month_year_week",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
"request_month_year_week": sorted_categories,
},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
error_week = error_df[error_df["request_month_year_week"] == week]
error_week.columns = error_week.columns.astype(str)
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
fig = px.bar(
error_week,
x="tool",
y="error_perc",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={
"market_creator": ["pearl", "quickstart", "all"],
},
)
fig.update_layout(
xaxis_title="Tool",
yaxis_title="Error Percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
|