File size: 20,036 Bytes
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
ac347d2
04a2c17
 
 
 
 
ac347d2
 
04a2c17
ac347d2
04a2c17
ac347d2
 
04a2c17
 
 
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
 
 
 
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac347d2
 
 
04a2c17
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cebb53d
04a2c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac347d2
04a2c17
 
 
 
 
 
 
 
 
 
ac347d2
 
04a2c17
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
#   -*- coding: utf-8 -*-
#   ------------------------------------------------------------------------------
#
#     Copyright 2023 Valory AG
#
#     Licensed under the Apache License, Version 2.0 (the "License");
#     you may not use this file except in compliance with the License.
#     You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#     Unless required by applicable law or agreed to in writing, software
#     distributed under the License is distributed on an "AS IS" BASIS,
#     WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#     See the License for the specific language governing permissions and
#     limitations under the License.
#
#   ------------------------------------------------------------------------------

import time
import requests
import datetime
import pandas as pd
from collections import defaultdict
from typing import Any, Union
from string import Template
from enum import Enum
from tqdm import tqdm
import numpy as np
from pathlib import Path

IRRELEVANT_TOOLS = [
    "openai-text-davinci-002",
    "openai-text-davinci-003",
    "openai-gpt-3.5-turbo",
    "openai-gpt-4",
    "stabilityai-stable-diffusion-v1-5",
    "stabilityai-stable-diffusion-xl-beta-v2-2-2",
    "stabilityai-stable-diffusion-512-v2-1",
    "stabilityai-stable-diffusion-768-v2-1",
    "deepmind-optimization-strong",
    "deepmind-optimization",
]
QUERY_BATCH_SIZE = 1000
DUST_THRESHOLD = 10000000000000
INVALID_ANSWER_HEX = (
    "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
INVALID_ANSWER = -1
FPMM_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec"
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
DEFAULT_FROM_TIMESTAMP = 0
DEFAULT_TO_TIMESTAMP = 2147483647
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
DEFAULT_MECH_FEE = 0.01
DUST_THRESHOLD = 10000000000000
SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
DATA_DIR = ROOT_DIR / "data"

class MarketState(Enum):
    """Market state"""

    OPEN = 1
    PENDING = 2
    FINALIZING = 3
    ARBITRATING = 4
    CLOSED = 5

    def __str__(self) -> str:
        """Prints the market status."""
        return self.name.capitalize()


class MarketAttribute(Enum):
    """Attribute"""

    NUM_TRADES = "Num_trades"
    WINNER_TRADES = "Winner_trades"
    NUM_REDEEMED = "Num_redeemed"
    INVESTMENT = "Investment"
    FEES = "Fees"
    MECH_CALLS = "Mech_calls"
    MECH_FEES = "Mech_fees"
    EARNINGS = "Earnings"
    NET_EARNINGS = "Net_earnings"
    REDEMPTIONS = "Redemptions"
    ROI = "ROI"

    def __str__(self) -> str:
        """Prints the attribute."""
        return self.value

    def __repr__(self) -> str:
        """Prints the attribute representation."""
        return self.name

    @staticmethod
    def argparse(s: str) -> "MarketAttribute":
        """Performs string conversion to MarketAttribute."""
        try:
            return MarketAttribute[s.upper()]
        except KeyError as e:
            raise ValueError(f"Invalid MarketAttribute: {s}") from e


ALL_TRADES_STATS_DF_COLS = [
    "trader_address",
    "trade_id",
    "creation_timestamp",
    "title",
    "market_status",
    "collateral_amount",
    "outcome_index",
    "trade_fee_amount",
    "outcomes_tokens_traded",
    "current_answer",
    "is_invalid",
    "winning_trade",
    "earnings",
    "redeemed",
    "redeemed_amount",
    "num_mech_calls",
    "mech_fee_amount",
    "net_earnings",
    "roi",
]

SUMMARY_STATS_DF_COLS = [
    "trader_address",
    "num_trades",
    "num_winning_trades",
    "num_redeemed",
    "total_investment",
    "total_trade_fees",
    "num_mech_calls",
    "total_mech_fees",
    "total_earnings",
    "total_redeemed_amount",
    "total_net_earnings",
    "total_net_earnings_wo_mech_fees",
    "total_roi",
    "total_roi_wo_mech_fees",
    "mean_mech_calls_per_trade",
    "mean_mech_fee_amount_per_trade",
]
headers = {
    "Accept": "application/json, multipart/mixed",
    "Content-Type": "application/json",
}


omen_xdai_trades_query = Template(
    """
    {
        fpmmTrades(
            where: {
                type: Buy,
                fpmm_: {
                    creator: "${fpmm_creator}"
                    creationTimestamp_gte: "${fpmm_creationTimestamp_gte}",
                    creationTimestamp_lt: "${fpmm_creationTimestamp_lte}"
                },
                creationTimestamp_gte: "${creationTimestamp_gte}",
                creationTimestamp_lte: "${creationTimestamp_lte}"
                id_gt: "${id_gt}"
            }
            first: ${first}
            orderBy: id
            orderDirection: asc
        ) {
            id
            title
            collateralToken
            outcomeTokenMarginalPrice
            oldOutcomeTokenMarginalPrice
            type
            creator {
                id
            }
            creationTimestamp
            collateralAmount
            collateralAmountUSD
            feeAmount
            outcomeIndex
            outcomeTokensTraded
            transactionHash
            fpmm {
                id
                outcomes
                title
                answerFinalizedTimestamp
                currentAnswer
                isPendingArbitration
                arbitrationOccurred
                openingTimestamp
                condition {
                    id
                }
            }
        }
    }
    """
)


conditional_tokens_gc_user_query = Template(
    """
    {
        user(id: "${id}") {
            userPositions(
                first: ${first}
                where: {
                    id_gt: "${userPositions_id_gt}"
                }
                orderBy: id
            ) {
                balance
                id
                position {
                    id
                    conditionIds
                }
                totalBalance
                wrappedBalance
            }
        }
    }
    """
)


def _to_content(q: str) -> dict[str, Any]:
    """Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes."""
    finalized_query = {
        "query": q,
        "variables": None,
        "extensions": {"headers": None},
    }
    return finalized_query


def _query_omen_xdai_subgraph(
    from_timestamp: float,
    to_timestamp: float,
    fpmm_from_timestamp: float,
    fpmm_to_timestamp: float,
) -> dict[str, Any]:
    """Query the subgraph."""
    url = "https://api.thegraph.com/subgraphs/name/protofire/omen-xdai"

    grouped_results = defaultdict(list)
    id_gt = ""

    while True:
        query = omen_xdai_trades_query.substitute(
            fpmm_creator=FPMM_CREATOR.lower(),
            creationTimestamp_gte=int(from_timestamp),
            creationTimestamp_lte=int(to_timestamp),
            fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),
            fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),
            first=QUERY_BATCH_SIZE,
            id_gt=id_gt,
        )
        content_json = _to_content(query)
        res = requests.post(url, headers=headers, json=content_json)
        result_json = res.json()
        user_trades = result_json.get("data", {}).get("fpmmTrades", [])

        if not user_trades:
            break

        for trade in user_trades:
            fpmm_id = trade.get("fpmm", {}).get("id")
            grouped_results[fpmm_id].append(trade)

        id_gt = user_trades[len(user_trades) - 1]["id"]

    all_results = {
        "data": {
            "fpmmTrades": [
                trade
                for trades_list in grouped_results.values()
                for trade in trades_list
            ]
        }
    }

    return all_results


def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:
    """Query the subgraph."""
    url = "https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc"

    all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}}
    userPositions_id_gt = ""
    while True:
        query = conditional_tokens_gc_user_query.substitute(
            id=creator.lower(),
            first=QUERY_BATCH_SIZE,
            userPositions_id_gt=userPositions_id_gt,
        )
        content_json = {"query": query}
        res = requests.post(url, headers=headers, json=content_json)
        result_json = res.json()
        user_data = result_json.get("data", {}).get("user", {})

        if not user_data:
            break

        user_positions = user_data.get("userPositions", [])

        if user_positions:
            all_results["data"]["user"]["userPositions"].extend(user_positions)
            userPositions_id_gt = user_positions[len(user_positions) - 1]["id"]
        else:
            break

    if len(all_results["data"]["user"]["userPositions"]) == 0:
        return {"data": {"user": None}}

    return all_results


def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:
    """Convert hex to int"""
    if isinstance(x, float):
        return np.nan
    elif isinstance(x, str):
        if x == INVALID_ANSWER_HEX:
            return -1
        else:
            return int(x, 16)


def wei_to_unit(wei: int) -> float:
    """Converts wei to currency unit."""
    return wei / 10**18


def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:
    """Returns whether the user has redeemed the position."""
    user_positions = user_json["data"]["user"]["userPositions"]
    outcomes_tokens_traded = int(fpmmTrade["outcomeTokensTraded"])
    condition_id = fpmmTrade["fpmm.condition.id"]

    for position in user_positions:
        position_condition_ids = position["position"]["conditionIds"]
        balance = int(position["balance"])

        if condition_id in position_condition_ids:
            if balance == 0:
                return True
            # return early
            return False
    return False


def create_fpmmTrades(rpc: str):
    """Create fpmmTrades for all trades."""
    trades_json = _query_omen_xdai_subgraph(
        from_timestamp=DEFAULT_FROM_TIMESTAMP,
        to_timestamp=DEFAULT_TO_TIMESTAMP,
        fpmm_from_timestamp=DEFAULT_FROM_TIMESTAMP,
        fpmm_to_timestamp=DEFAULT_TO_TIMESTAMP,
    )

    # convert to dataframe
    df = pd.DataFrame(trades_json["data"]["fpmmTrades"])

    # convert creator to address
    df["creator"] = df["creator"].apply(lambda x: x["id"])

    # normalize fpmm column
    fpmm = pd.json_normalize(df["fpmm"])
    fpmm.columns = [f"fpmm.{col}" for col in fpmm.columns]
    df = pd.concat([df, fpmm], axis=1)

    # drop fpmm column
    df.drop(["fpmm"], axis=1, inplace=True)

    # change creator to creator_address
    df.rename(columns={"creator": "trader_address"}, inplace=True)

    # save to csv
    df.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)

    return df


def prepare_profitalibity_data(rpc: str):
    """Prepare data for profitalibity analysis."""

    # Check if tools.py is in the same directory
    try:
        # load tools.csv
        tools = pd.read_parquet(DATA_DIR / "tools.parquet")

        # make sure creator_address is in the columns
        assert "trader_address" in tools.columns, "trader_address column not found"

        # lowercase and strip creator_address
        tools["trader_address"] = tools["trader_address"].str.lower().str.strip()

        # drop duplicates
        tools.drop_duplicates(inplace=True)

        print("tools.parquet loaded")
    except FileNotFoundError:
        print("tools.parquet not found. Please run tools.py first.")
        return

    # Check if fpmmTrades.csv is in the same directory
    try:
        # load fpmmTrades.csv
        fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
        print("fpmmTrades.parquet loaded")
    except FileNotFoundError:
        print("fpmmTrades.parquet not found. Creating fpmmTrades.parquet...")
        fpmmTrades = create_fpmmTrades(rpc)
        fpmmTrades.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
        fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")

    # make sure trader_address is in the columns
    assert "trader_address" in fpmmTrades.columns, "trader_address column not found"

    # lowercase and strip creator_address
    fpmmTrades["trader_address"] = fpmmTrades["trader_address"].str.lower().str.strip()

    return fpmmTrades, tools


def determine_market_status(trade, current_answer):
    """Determine the market status of a trade."""
    if current_answer is np.nan and time.time() >= int(trade["fpmm.openingTimestamp"]):
        return MarketState.PENDING
    elif current_answer == np.nan:
        return MarketState.OPEN
    elif trade["fpmm.isPendingArbitration"]:
        return MarketState.ARBITRATING
    elif time.time() < int(trade["fpmm.answerFinalizedTimestamp"]):
        return MarketState.FINALIZING
    return MarketState.CLOSED


def analyse_trader(
    trader_address: str, fpmmTrades: pd.DataFrame, tools: pd.DataFrame
) -> pd.DataFrame:
    """Analyse a trader's trades"""
    # Filter trades and tools for the given trader
    trades = fpmmTrades[fpmmTrades["trader_address"] == trader_address]
    tools_usage = tools[tools["trader_address"] == trader_address]

    # Prepare the DataFrame
    trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)
    if trades.empty:
        return trades_df

    # Fetch user's conditional tokens gc graph
    try:
        user_json = _query_conditional_tokens_gc_subgraph(trader_address)
    except Exception as e:
        print(f"Error fetching user data: {e}")
        return trades_df

    # Iterate over the trades
    for i, trade in tqdm(trades.iterrows(), total=len(trades), desc="Analysing trades"):
        try:
            if not trade['fpmm.currentAnswer']:
                print(f"Skipping trade {i} because currentAnswer is NaN")
                continue
            # Parsing and computing shared values
            creation_timestamp_utc = datetime.datetime.fromtimestamp(
                int(trade["creationTimestamp"]), tz=datetime.timezone.utc
            )
            collateral_amount = wei_to_unit(float(trade["collateralAmount"]))
            fee_amount = wei_to_unit(float(trade["feeAmount"]))
            outcome_tokens_traded = wei_to_unit(float(trade["outcomeTokensTraded"]))
            earnings, winner_trade = (0, False)
            redemption = _is_redeemed(user_json, trade)
            current_answer = trade["fpmm.currentAnswer"]

            # Determine market status
            market_status = determine_market_status(trade, current_answer)

            # Skip non-closed markets
            if market_status != MarketState.CLOSED:
                print(
                    f"Skipping trade {i} because market is not closed. Market Status: {market_status}"
                )
                continue
            current_answer = convert_hex_to_int(current_answer)

            # Compute invalidity
            is_invalid = current_answer == INVALID_ANSWER

            # Compute earnings and winner trade status
            if is_invalid:
                earnings = collateral_amount
                winner_trade = False
            elif int(trade["outcomeIndex"]) == current_answer:
                earnings = outcome_tokens_traded
                winner_trade = True

            # Compute mech calls
            num_mech_calls = (
                tools_usage["prompt_request"].apply(lambda x: trade["title"] in x).sum()
            )
            net_earnings = (
                earnings
                - fee_amount
                - (num_mech_calls * DEFAULT_MECH_FEE)
                - collateral_amount
            )

            # Assign values to DataFrame
            trades_df.loc[i] = {
                "trader_address": trader_address,
                "trade_id": trade["id"],
                "market_status": market_status.name,
                "creation_timestamp": creation_timestamp_utc,
                "title": trade["title"],
                "collateral_amount": collateral_amount,
                "outcome_index": trade["outcomeIndex"],
                "trade_fee_amount": fee_amount,
                "outcomes_tokens_traded": outcome_tokens_traded,
                "current_answer": current_answer,
                "is_invalid": is_invalid,
                "winning_trade": winner_trade,
                "earnings": earnings,
                "redeemed": redemption,
                "redeemed_amount": earnings if redemption else 0,
                "num_mech_calls": num_mech_calls,
                "mech_fee_amount": num_mech_calls * DEFAULT_MECH_FEE,
                "net_earnings": net_earnings,
                "roi": net_earnings / (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),
            }

        except Exception as e:
            print(f"Error processing trade {i}: {e}")
            continue

    return trades_df


def analyse_all_traders(trades: pd.DataFrame, tools: pd.DataFrame) -> pd.DataFrame:
    """Analyse all creators."""
    all_traders = []
    for trader in tqdm(
        trades["trader_address"].unique(),
        total=len(trades["trader_address"].unique()),
        desc="Analysing creators",
    ):
        all_traders.append(analyse_trader(trader, trades, tools))

    # concat all creators
    all_creators_df = pd.concat(all_traders)

    return all_creators_df


def summary_analyse(df):
    """Summarise profitability analysis."""
    # Ensure DataFrame is not empty
    if df.empty:
        return pd.DataFrame(columns=SUMMARY_STATS_DF_COLS)

    # Group by trader_address
    grouped = df.groupby("trader_address")

    # Create summary DataFrame
    summary_df = grouped.agg(
        num_trades=("trader_address", "size"),
        num_winning_trades=("winning_trade", lambda x: float((x).sum())),
        num_redeemed=("redeemed", lambda x: float(x.sum())),
        total_investment=("collateral_amount", "sum"),
        total_trade_fees=("trade_fee_amount", "sum"),
        num_mech_calls=("num_mech_calls", "sum"),
        total_mech_fees=("mech_fee_amount", "sum"),
        total_earnings=("earnings", "sum"),
        total_redeemed_amount=("redeemed_amount", "sum"),
        total_net_earnings=("net_earnings", "sum"),
    )

    # Calculating additional columns
    summary_df["total_roi"] = (
        summary_df["total_net_earnings"] / summary_df["total_investment"]
    )
    summary_df["mean_mech_calls_per_trade"] = (
        summary_df["num_mech_calls"] / summary_df["num_trades"]
    )
    summary_df["mean_mech_fee_amount_per_trade"] = (
        summary_df["total_mech_fees"] / summary_df["num_trades"]
    )
    summary_df["total_net_earnings_wo_mech_fees"] = (
        summary_df["total_net_earnings"] + summary_df["total_mech_fees"]
    )
    summary_df["total_roi_wo_mech_fees"] = (
        summary_df["total_net_earnings_wo_mech_fees"] / summary_df["total_investment"]
    )

    # Resetting index to include trader_address
    summary_df.reset_index(inplace=True)

    return summary_df


def run_profitability_analysis(rpc):
    """Create all trades analysis."""

    # load dfs from csv for analysis
    print("Preparing data...")
    fpmmTrades, tools = prepare_profitalibity_data(rpc)
    tools['trader_address'] = tools['trader_address'].str.lower()

    # all trades profitability df
    print("Analysing trades...")
    all_trades_df = analyse_all_traders(fpmmTrades, tools)

    # summarize profitability df
    print("Summarising trades...")
    summary_df = summary_analyse(all_trades_df)

    # save to csv
    all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
    summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)

    print("Done!")

    return all_trades_df, summary_df


if __name__ == "__main__":
    rpc = "https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a"
    run_profitability_analysis(rpc)