rosacastillo's picture
new weekly data and fixes on the pipeline due to new year format
6992ec1
raw
history blame
12.2 kB
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime
HEIGHT = 400
WIDTH = 1100
def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Prepares the trades data for analysis."""
trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"])
trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date
trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert(
"UTC"
)
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
trades_df["month_year"] = (
trades_df["creation_timestamp"].dt.to_period("M").astype(str)
)
trades_df["month_year_week"] = (
trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d-%Y")
)
trades_df["winning_trade"] = trades_df["winning_trade"].astype(int)
return trades_df
def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall trades data"""
trades_count = trades_df.groupby("month_year_week").size().reset_index()
trades_count.columns = trades_count.columns.astype(str)
trades_count.rename(columns={"0": "trades"}, inplace=True)
return trades_count
def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall trades data"""
trades_count = (
trades_df.groupby(["month_year_week", "market_creator"], sort=False)
.size()
.reset_index()
)
trades_count.columns = trades_count.columns.astype(str)
trades_count.rename(columns={"0": "trades"}, inplace=True)
return trades_count
def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
winning_trades = (
trades_df.groupby(["month_year_week"])["winning_trade"].sum()
/ trades_df.groupby(["month_year_week"])["winning_trade"].count()
* 100
)
# winning_trades is a series, give it a dataframe
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = ["month_year_week", "winning_trade"]
return winning_trades
def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame:
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
winning_trades = (
trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
"winning_trade"
].sum()
/ trades_df.groupby(["month_year_week", "market_creator"], sort=False)[
"winning_trade"
].count()
* 100
)
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
return winning_trades
def get_overall_winning_by_market_and_trader_type(
trades_df: pd.DataFrame,
) -> pd.DataFrame:
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
# Group by week, market_creator and staking_type
winning_trades = (
trades_df.groupby(
["month_year_week", "market_creator", "staking_type"], sort=False
)["winning_trade"].sum()
/ trades_df.groupby(
["month_year_week", "market_creator", "staking_type"], sort=False
)["winning_trade"].count()
* 100
)
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = [
"month_year_week",
"market_creator",
"staking_type",
"winning_trade",
]
return winning_trades
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
"""Plots the weekly trades data ."""
return gr.BarPlot(
value=trades_df,
x="month_year_week",
y="trades",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "trades"],
height=HEIGHT,
width=WIDTH,
)
def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot:
# adding the total
trades_all = trades_df.copy(deep=True)
trades_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
trades = get_overall_by_market_trades(all_filtered_trades)
fig = px.bar(
trades,
x="month_year_week",
y="trades",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly nr of trades",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(value=fig)
def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.Plot:
# adding the total
trades_all = trades_df.copy(deep=True)
trades_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
# Create binary staking category
all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
)
# Group by week, market_creator and staking_type
trades = (
all_filtered_trades.groupby(
["month_year_week", "market_creator", "staking_type"], sort=False
)
.size()
.reset_index(name="trades")
)
# Convert string dates to datetime and sort them
all_dates_dt = sorted(
[
datetime.strptime(date, "%b-%d-%Y")
for date in trades["month_year_week"].unique()
]
)
# Convert back to string format
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
# Combine the traces
final_traces = []
market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
market_darker_colors = {
"pearl": "purple",
"quickstart": "darkgoldenrod",
"all": "darkgreen",
}
# Process both Olas and non-Olas traces for each market together
for market in ["pearl", "quickstart", "all"]:
market_data = trades[trades["market_creator"] == market]
# Create a dictionary to store the Olas values for each week
olas_values = dict(
zip(
market_data[market_data["staking_type"] == "Olas"]["month_year_week"],
market_data[market_data["staking_type"] == "Olas"]["trades"],
)
)
# First add 'Olas' trace
olas_data = market_data[market_data["staking_type"] == "Olas"]
olas_trace = go.Bar(
x=olas_data["month_year_week"],
y=olas_data["trades"],
name=f"{market}-Olas",
marker_color=market_colors[market],
offsetgroup=market, # Keep the market grouping
showlegend=True,
)
# Then add 'non_Olas' trace with base set to olas values
non_Olas_data = market_data[market_data["staking_type"] == "non_Olas"]
non_Olas_trace = go.Bar(
x=non_Olas_data["month_year_week"],
y=non_Olas_data["trades"],
name=f"{market}-non_Olas",
marker_color=market_darker_colors[market],
offsetgroup=market, # Keep the market grouping
base=[olas_values.get(x, 0) for x in non_Olas_data["month_year_week"]],
showlegend=True,
)
final_traces.extend([olas_trace, non_Olas_trace])
# Create new figure with the combined traces
fig = go.Figure(data=final_traces)
# Update layout
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly nr of trades",
legend=dict(yanchor="top", y=0.5),
width=WIDTH,
height=HEIGHT,
barmode="group",
)
# Update x-axis format
fig.update_xaxes(tickformat="%b %d\n%Y")
# Update layout to force x-axis category order (hotfix for a sorting issue)
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
return gr.Plot(value=fig)
def integrated_plot_winning_trades_per_market_by_week(
trades_df: pd.DataFrame,
) -> gr.Plot:
# adding the total
trades_all = trades_df.copy(deep=True)
trades_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
final_df = get_overall_winning_by_market_trades(all_filtered_trades)
fig = px.bar(
final_df,
x="month_year_week",
y="winning_trade",
color="market_creator",
barmode="group",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly % of winning trades",
legend=dict(yanchor="top", y=0.5),
)
fig.update_layout(width=WIDTH, height=HEIGHT)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def integrated_plot_winning_trades_per_market_by_week_v2(
trades_df: pd.DataFrame, trader_filter: str = "all"
) -> gr.Plot:
# adding the total
trades_all = trades_df.copy(deep=True)
trades_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
# Create binary staking category
all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
lambda x: "non_Olas" if x == "non_Olas" else "Olas"
)
if trader_filter == "all":
final_df = get_overall_winning_by_market_trades(all_filtered_trades)
else:
final_df = get_overall_winning_by_market_and_trader_type(all_filtered_trades)
# Convert string dates to datetime and sort them
all_dates_dt = sorted(
[
datetime.strptime(date, "%b-%d-%Y")
for date in final_df["month_year_week"].unique()
]
)
# Convert back to string format
all_dates = [date.strftime("%b-%d-%Y") for date in all_dates_dt]
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
if trader_filter == "Olas":
final_df = final_df[final_df["staking_type"] == "Olas"]
elif trader_filter == "non_Olas":
final_df = final_df[final_df["staking_type"] == "non_Olas"]
color_discrete_sequence = ["purple", "darkgoldenrod", "darkgreen"]
fig = px.bar(
final_df,
x="month_year_week",
y="winning_trade",
color="market_creator",
barmode="group",
color_discrete_sequence=color_discrete_sequence,
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly % of winning trades",
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
# Update layout to force x-axis category order (hotfix for a sorting issue)
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
return gr.Plot(
value=fig,
)