rosacastillo's picture
updating all files except the tools big file
ac8ae1f
raw
history blame
6.65 kB
import pandas as pd
import gradio as gr
import plotly.express as px
import gc
from datetime import datetime
trade_metric_choices = [
"mech calls",
"collateral amount",
"earnings",
"net earnings",
"ROI",
]
tool_metric_choices = {
"Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %": "win_perc",
"Total Weekly Inaccurate Nr of Mech Tool Responses": "losses",
"Total Weekly Accurate Nr of Mech Tool Responses": "wins",
"Total Weekly Nr of Mech Tool Requests": "total_request",
}
default_trade_metric = "ROI"
default_tool_metric = "Weekly Mean Mech Tool Accuracy as (Accurate Responses/All) %"
HEIGHT = 600
WIDTH = 1000
def get_metrics(
metric_name: str, column_name: str, market_creator: str, trades_df: pd.DataFrame
) -> pd.DataFrame:
# this is to filter out the data before 2023-09-01
trades_filtered = trades_df[trades_df["creation_timestamp"] > "2023-09-01"]
if market_creator != "all":
trades_filtered = trades_filtered.loc[
trades_filtered["market_creator"] == market_creator
]
trades_filtered = (
trades_filtered.groupby("month_year_week", sort=False)[column_name]
.quantile([0.25, 0.5, 0.75])
.unstack()
)
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
)
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile",
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(
id_vars=["month_year_week"], var_name="percentile", value_name=metric_name
)
return trades_filtered
def get_boxplot_metrics(column_name: str, trades_df: pd.DataFrame) -> pd.DataFrame:
trades_filtered = trades_df[
["creation_timestamp", "month_year_week", "market_creator", column_name]
]
# adding the total
trades_filtered_all = trades_df.copy(deep=True)
trades_filtered_all["market_creator"] = "all"
# merging both dataframes
all_filtered_trades = pd.concat(
[trades_filtered, trades_filtered_all], ignore_index=True
)
all_filtered_trades = all_filtered_trades.sort_values(
by="creation_timestamp", ascending=True
)
gc.collect()
return all_filtered_trades
def plot2_trade_details(
metric_name: str, market_creator: str, trades_df: pd.DataFrame
) -> gr.Plot:
"""Plots the trade details for the given trade detail."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "num_mech_calls"
yaxis_title = "Nr of mech calls per trade"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "ROI (net profit/cost)"
elif metric_name == "collateral amount":
metric_name = "collateral_amount"
column_name = metric_name
yaxis_title = "Collateral amount per trade (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Net profit per trade (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Gross profit per trade (xDAI)"
trades_filtered = get_metrics(metric_name, column_name, market_creator, trades_df)
fig = px.line(
trades_filtered, x="month_year_week", y=metric_name, color="percentile"
)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def plot_trade_metrics(
metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
) -> gr.Plot:
"""Plots the trade metrics."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "num_mech_calls"
yaxis_title = "Nr of mech calls per trade"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "ROI (net profit/cost)"
elif metric_name == "collateral amount":
metric_name = "collateral_amount"
column_name = metric_name
yaxis_title = "Collateral amount per trade (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Net profit per trade (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Gross profit per trade (xDAI)"
color_discrete = ["purple", "darkgoldenrod", "darkgreen"]
if trader_filter == "Olas":
trades_filtered = get_boxplot_metrics(
column_name, trades_df.loc[trades_df["staking"] != "non_Olas"]
)
color_discrete = ["darkviolet", "goldenrod", "green"]
elif trader_filter == "non_Olas":
trades_filtered = get_boxplot_metrics(
column_name, trades_df.loc[trades_df["staking"] == "non_Olas"]
)
else:
trades_filtered = get_boxplot_metrics(column_name, trades_df)
# Convert string dates to datetime and sort them
all_dates_dt = sorted(
[
datetime.strptime(date, "%b-%d")
for date in trades_filtered["month_year_week"].unique()
]
)
# Convert back to string format
all_dates = [date.strftime("%b-%d") for date in all_dates_dt]
fig = px.box(
trades_filtered,
x="month_year_week",
y=column_name,
color="market_creator",
color_discrete_sequence=color_discrete,
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_traces(boxmean=True)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
# Update layout to force x-axis category order (hotfix for a sorting issue)
fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates})
return gr.Plot(
value=fig,
)
def get_trade_metrics_text() -> gr.Markdown:
metric_text = """
## Description of the graph
These metrics are computed weekly. The statistical measures are:
* min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
* the upper and lower fences to delimit possible outliers
* the average values as the dotted lines
"""
return gr.Markdown(metric_text)