rosacastillo's picture
removed dependency with tools.parquet and new mech calls computation timestamps based
278fab8
import gradio as gr
import pandas as pd
import duckdb
import logging
from tabs.trades import (
prepare_trades,
get_overall_trades,
get_overall_by_market_trades,
get_overall_winning_by_market_trades,
integrated_plot_trades_per_market_by_week_v2,
integrated_plot_winning_trades_per_market_by_week_v2,
)
from tabs.staking import plot_staking_trades_per_market_by_week
from tabs.metrics import (
trade_metric_choices,
tool_metric_choices,
default_trade_metric,
default_tool_metric,
plot_trade_metrics,
get_trade_metrics_text,
)
from tabs.tool_win import (
integrated_plot_tool_winnings_overall_per_market_by_week,
integrated_tool_winnings_by_tool_per_market,
)
from tabs.tool_accuracy import (
plot_tools_weighted_accuracy_rotated_graph,
plot_tools_accuracy_rotated_graph,
compute_weighted_accuracy,
)
from tabs.invalid_markets import (
plot_daily_dist_invalid_trades,
plot_top_invalid_markets,
plotly_daily_nr_invalid_markets,
)
from tabs.error import (
plot_week_error_data_by_market,
plot_error_data_by_market,
get_error_data_overall_by_market,
plot_tool_error_data_by_market,
)
from tabs.about import about_olas_predict, about_this_dashboard
from scripts.utils import INC_TOOLS
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get all data from the parquet files
"""
logger.info("Getting all data")
con = duckdb.connect(":memory:")
query6 = f"""
SELECT *
FROM read_parquet('./data/winning_df.parquet')
"""
df6 = con.execute(query6).fetchdf()
query5 = f"""
SELECT *
FROM read_parquet('./data/unknown_traders.parquet')
"""
df5 = con.execute(query5).fetchdf()
# Query to fetch invalid trades data
query4 = f"""
SELECT *
FROM read_parquet('./data/invalid_trades.parquet')
"""
df4 = con.execute(query4).fetchdf()
# Query to fetch tools accuracy data
query3 = f"""
SELECT *
FROM read_csv('./data/tools_accuracy.csv')
"""
df3 = con.execute(query3).fetchdf()
# Query to fetch data from all_trades_profitability.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
query1 = f"""
SELECT *
FROM read_parquet('./data/error_by_markets.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from error_by_markets.parquet")
con.close()
return df1, df2, df3, df4, df5, df6
def prepare_data():
"""
Prepare the data for the dashboard
"""
(
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
) = get_all_data()
print(trades_df.info())
trades_df = prepare_trades(trades_df)
unknown_trades = prepare_trades(unknown_trades)
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
print("weighted accuracy info")
print(tools_accuracy_info.head())
invalid_trades["creation_timestamp"] = pd.to_datetime(
invalid_trades["creation_timestamp"]
)
invalid_trades["creation_date"] = invalid_trades["creation_timestamp"].dt.date
# discovering outliers for ROI
outliers = trades_df.loc[trades_df["roi"] >= 1000]
if len(outliers) > 0:
outliers.to_parquet("./data/outliers.parquet")
trades_df = trades_df.loc[trades_df["roi"] < 1000]
return (
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
)
(
error_by_markets,
trades_df,
tools_accuracy_info,
invalid_trades,
unknown_trades,
winning_df,
) = prepare_data()
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
demo = gr.Blocks()
# preparing data for the errors
error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)
# preparing data for the trades graph
trades_count_df = get_overall_trades(trades_df=trades_df)
trades_by_market = get_overall_by_market_trades(trades_df=trades_df)
winning_trades_by_market = get_overall_winning_by_market_trades(trades_df=trades_df)
with demo:
gr.HTML("<h1>Olas Predict Actual Performance</h1>")
gr.Markdown(
"This app shows the actual performance of Olas Predict tools on the live market."
)
with gr.Tabs():
with gr.TabItem("πŸ”₯ Weekly Trades Dashboard"):
with gr.Row():
gr.Markdown("# Trend of weekly trades")
with gr.Row():
trades_by_week = integrated_plot_trades_per_market_by_week_v2(
trades_df=trades_df
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for trades based on 🌊 Olas traders"
)
olas_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="Olas"
)
)
with gr.Column(scale=1):
gr.Markdown(
"# Weekly percentage of winning for trades based on non-Olas traders"
)
non_Olas_winning_trades = (
integrated_plot_winning_trades_per_market_by_week_v2(
trades_df=trades_df, trader_filter="non_Olas"
)
)
def update_trade_details(trade_detail, trade_details_plot):
new_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
)
return new_plot
with gr.Row():
gr.Markdown("# βš–οΈ Weekly trading metrics for all trades")
with gr.Row():
trade_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(trader_type=None)
trade_details_selector.change(
update_trade_details,
inputs=[trade_details_selector, trade_details_plot],
outputs=[trade_details_plot],
)
# Agentic traders graph
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from 🌊 Olas traders"
)
with gr.Row():
trade_o_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_o_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="Olas",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(trader_type="Olas")
def update_a_trade_details(trade_detail, trade_o_details_plot):
new_a_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="Olas",
)
return new_a_plot
trade_o_details_selector.change(
update_a_trade_details,
inputs=[trade_o_details_selector, trade_o_details_plot],
outputs=[trade_o_details_plot],
)
# Non-Olasic traders graph
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from Non-Olas traders"
)
with gr.Row():
trade_no_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_no_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=trades_df,
trader_filter="non_Olas",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text("non_Olas")
def update_na_trade_details(trade_detail, trade_details_plot):
new_no_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=trades_df,
trader_filter="non_Olas",
)
return new_no_plot
trade_no_details_selector.change(
update_na_trade_details,
inputs=[trade_no_details_selector, trade_no_details_plot],
outputs=[trade_no_details_plot],
)
# Unknown traders graph
if len(unknown_trades) > 0:
with gr.Row():
gr.Markdown(
"# Weekly trading metrics for trades coming from Unclassified traders"
)
with gr.Row():
trade_u_details_selector = gr.Dropdown(
label="Select a trade metric",
choices=trade_metric_choices,
value=default_trade_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_u_details_plot = plot_trade_metrics(
metric_name=default_trade_metric,
trades_df=unknown_trades,
trader_filter="all",
)
with gr.Column(scale=1):
trade_details_text = get_trade_metrics_text(
trader_type="unclassified"
)
def update_na_trade_details(trade_detail, trade_u_details_plot):
new_u_plot = plot_trade_metrics(
metric_name=trade_detail,
trades_df=unknown_trades,
trader_filter="all",
)
return new_u_plot
trade_u_details_selector.change(
update_na_trade_details,
inputs=[trade_u_details_selector, trade_u_details_plot],
outputs=[trade_u_details_plot],
)
with gr.TabItem("πŸ”’ Staking traders"):
with gr.Row():
gr.Markdown("# Trades conducted at the Pearl markets")
with gr.Row():
print("Calling plot staking with pearl")
staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="pearl"
)
with gr.Row():
gr.Markdown("# Trades conducted at the Quickstart markets")
with gr.Row():
staking_qs_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="quickstart"
)
with gr.Row():
gr.Markdown("# Trades conducted irrespective of the market")
with gr.Row():
staking_trades_by_week = plot_staking_trades_per_market_by_week(
trades_df=trades_df, market_creator="all"
)
with gr.TabItem("πŸš€ Tool Winning Dashboard"):
with gr.Row():
gr.Markdown("# All tools winning performance")
with gr.Row():
winning_selector = gr.Dropdown(
label="Select the tool metric",
choices=list(tool_metric_choices.keys()),
value=default_tool_metric,
)
with gr.Row():
# plot_tool_metrics
winning_plot = integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df,
winning_selector=default_tool_metric,
)
def update_tool_winnings_overall_plot(winning_selector):
return integrated_plot_tool_winnings_overall_per_market_by_week(
winning_df=winning_df, winning_selector=winning_selector
)
winning_selector.change(
update_tool_winnings_overall_plot,
inputs=winning_selector,
outputs=winning_plot,
)
with gr.Row():
winning_selector
with gr.Row():
winning_plot
with gr.Row():
gr.Markdown("# Winning performance by each tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_winnings_by_tool_plot = (
integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=INC_TOOLS[0]
)
)
def update_tool_winnings_by_tool_plot(tool):
return integrated_tool_winnings_by_tool_per_market(
wins_df=winning_df, tool=tool
)
sel_tool.change(
update_tool_winnings_by_tool_plot,
inputs=sel_tool,
outputs=tool_winnings_by_tool_plot,
)
with gr.Row():
sel_tool
with gr.Row():
tool_winnings_by_tool_plot
with gr.TabItem("🎯 Tool Accuracy Dashboard"):
with gr.Row():
gr.Markdown("# Tools accuracy ranking")
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This accuracy is computed based on right answers from the total requests received."
)
with gr.Row():
_ = plot_tools_accuracy_rotated_graph(tools_accuracy_info)
with gr.Row():
gr.Markdown("# Weighted accuracy ranking per tool")
with gr.Row():
gr.Markdown(
"This metric is an approximation to the real metric used by the trader since some parameters are only dynamically generated."
)
with gr.Row():
gr.Markdown(
"The data used for this metric is from the past two months. This metric is computed using both the tool accuracy and the volume of requests received by the tool. The minimum value of this custom metric is 0 and the maximum value is 1. The higher the better is the tool."
)
with gr.Row():
_ = plot_tools_weighted_accuracy_rotated_graph(tools_accuracy_info)
with gr.TabItem("β›” Invalid Markets Dashboard"):
with gr.Row():
gr.Markdown("# Daily distribution of invalid trades")
with gr.Row():
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
with gr.Row():
gr.Markdown("# Top markets with invalid trades")
with gr.Row():
top_invalid_markets = plot_top_invalid_markets(invalid_trades)
with gr.Row():
gr.Markdown("# Daily distribution of invalid markets")
with gr.Row():
invalid_markets = plotly_daily_nr_invalid_markets(invalid_trades)
with gr.TabItem("πŸ₯ Tool Error Dashboard"):
with gr.Row():
gr.Markdown("# All tools errors")
with gr.Row():
error_overall_plot = plot_error_data_by_market(
error_all_df=error_overall_by_markets
)
with gr.Row():
gr.Markdown("# Error percentage per tool")
with gr.Row():
sel_tool = gr.Dropdown(
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
)
with gr.Row():
tool_error_plot = plot_tool_error_data_by_market(
error_df=error_by_markets, tool=INC_TOOLS[0]
)
def update_tool_error_plot(tool):
return plot_tool_error_data_by_market(
error_df=error_by_markets, tool=tool
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
gr.Markdown("# Tools distribution of errors per week")
with gr.Row():
choices = (
error_overall_by_markets["request_month_year_week"]
.unique()
.tolist()
)
# sort the choices by the latest week to be on the top
choices = sorted(choices)
sel_week = gr.Dropdown(
label="Select a week", choices=choices, value=choices[-1]
)
with gr.Row():
week_error_plot = plot_week_error_data_by_market(
error_df=error_by_markets, week=choices[-1]
)
def update_week_error_plot(selected_week):
return plot_week_error_data_by_market(
error_df=error_by_markets, week=selected_week
)
sel_tool.change(
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
)
sel_week.change(
update_week_error_plot, inputs=sel_week, outputs=week_error_plot
)
with gr.Row():
sel_tool
with gr.Row():
tool_error_plot
with gr.Row():
sel_week
with gr.Row():
week_error_plot
with gr.TabItem("ℹ️ About"):
with gr.Accordion("About Olas Predict"):
gr.Markdown(about_olas_predict)
with gr.Accordion("About this dashboard"):
gr.Markdown(about_this_dashboard)
demo.queue(default_concurrency_limit=40).launch()