cyberosa
commited on
Commit
·
0621b0b
1
Parent(s):
5f5eb85
Reducing parquet files. Time window two months
Browse files- app.py +14 -11
- data/all_trades_profitability.parquet +2 -2
- data/delivers.parquet +2 -2
- data/fpmmTrades.parquet +2 -2
- data/fpmms.parquet +2 -2
- data/requests.parquet +2 -2
- data/summary_profitability.parquet +2 -2
- data/t_map.pkl +2 -2
- data/tools.parquet +2 -2
- tabs/about.py +8 -2
app.py
CHANGED
@@ -24,7 +24,7 @@ from tabs.error import (
|
|
24 |
plot_tool_error_data,
|
25 |
plot_week_error_data,
|
26 |
)
|
27 |
-
from tabs.about import about_olas_predict
|
28 |
|
29 |
|
30 |
def get_logger():
|
@@ -151,20 +151,20 @@ with demo:
|
|
151 |
with gr.Tabs():
|
152 |
with gr.TabItem("🔥Trades Dashboard"):
|
153 |
with gr.Row():
|
154 |
-
gr.Markdown("#
|
155 |
with gr.Row():
|
156 |
trades_by_week_plot = plot_trades_by_week(trades_df=trades_count_df)
|
157 |
with gr.Row():
|
158 |
-
gr.Markdown("#
|
159 |
with gr.Row():
|
160 |
winning_trades_by_week_plot = plot_winning_trades_by_week(
|
161 |
trades_df=trades_winning_rate_df
|
162 |
)
|
163 |
with gr.Row():
|
164 |
-
gr.Markdown("#
|
165 |
with gr.Row():
|
166 |
trade_details_selector = gr.Dropdown(
|
167 |
-
label="Select a trade",
|
168 |
choices=[
|
169 |
"mech calls",
|
170 |
"collateral amount",
|
@@ -197,11 +197,11 @@ with demo:
|
|
197 |
|
198 |
with gr.TabItem("🚀 Tool Winning Dashboard"):
|
199 |
with gr.Row():
|
200 |
-
gr.Markdown("#
|
201 |
|
202 |
with gr.Row():
|
203 |
winning_selector = gr.Dropdown(
|
204 |
-
label="Select
|
205 |
choices=["losses", "wins", "total_request", "win_perc"],
|
206 |
value="win_perc",
|
207 |
)
|
@@ -228,7 +228,7 @@ with demo:
|
|
228 |
winning_plot
|
229 |
|
230 |
with gr.Row():
|
231 |
-
gr.Markdown("#
|
232 |
|
233 |
with gr.Row():
|
234 |
sel_tool = gr.Dropdown(
|
@@ -256,11 +256,11 @@ with demo:
|
|
256 |
|
257 |
with gr.TabItem("🏥 Tool Error Dashboard"):
|
258 |
with gr.Row():
|
259 |
-
gr.Markdown("#
|
260 |
with gr.Row():
|
261 |
error_overall_plot = plot_error_data(error_all_df=error_overall_df)
|
262 |
with gr.Row():
|
263 |
-
gr.Markdown("#
|
264 |
with gr.Row():
|
265 |
sel_tool = gr.Dropdown(
|
266 |
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
|
@@ -283,7 +283,7 @@ with demo:
|
|
283 |
tool_error_plot
|
284 |
|
285 |
with gr.Row():
|
286 |
-
gr.Markdown("#
|
287 |
|
288 |
with gr.Row():
|
289 |
choices = error_overall_df["request_month_year_week"].unique().tolist()
|
@@ -321,4 +321,7 @@ with demo:
|
|
321 |
with gr.Accordion("About Olas Predict"):
|
322 |
gr.Markdown(about_olas_predict)
|
323 |
|
|
|
|
|
|
|
324 |
demo.queue(default_concurrency_limit=40).launch()
|
|
|
24 |
plot_tool_error_data,
|
25 |
plot_week_error_data,
|
26 |
)
|
27 |
+
from tabs.about import about_olas_predict, about_this_dashboard
|
28 |
|
29 |
|
30 |
def get_logger():
|
|
|
151 |
with gr.Tabs():
|
152 |
with gr.TabItem("🔥Trades Dashboard"):
|
153 |
with gr.Row():
|
154 |
+
gr.Markdown("# Number of trades per week")
|
155 |
with gr.Row():
|
156 |
trades_by_week_plot = plot_trades_by_week(trades_df=trades_count_df)
|
157 |
with gr.Row():
|
158 |
+
gr.Markdown("# Percentage of winning trades per week")
|
159 |
with gr.Row():
|
160 |
winning_trades_by_week_plot = plot_winning_trades_by_week(
|
161 |
trades_df=trades_winning_rate_df
|
162 |
)
|
163 |
with gr.Row():
|
164 |
+
gr.Markdown("# Trading metrics")
|
165 |
with gr.Row():
|
166 |
trade_details_selector = gr.Dropdown(
|
167 |
+
label="Select a trade metric",
|
168 |
choices=[
|
169 |
"mech calls",
|
170 |
"collateral amount",
|
|
|
197 |
|
198 |
with gr.TabItem("🚀 Tool Winning Dashboard"):
|
199 |
with gr.Row():
|
200 |
+
gr.Markdown("# All tools winning performance")
|
201 |
|
202 |
with gr.Row():
|
203 |
winning_selector = gr.Dropdown(
|
204 |
+
label="Select the tool metric",
|
205 |
choices=["losses", "wins", "total_request", "win_perc"],
|
206 |
value="win_perc",
|
207 |
)
|
|
|
228 |
winning_plot
|
229 |
|
230 |
with gr.Row():
|
231 |
+
gr.Markdown("# Winning performance by each tool")
|
232 |
|
233 |
with gr.Row():
|
234 |
sel_tool = gr.Dropdown(
|
|
|
256 |
|
257 |
with gr.TabItem("🏥 Tool Error Dashboard"):
|
258 |
with gr.Row():
|
259 |
+
gr.Markdown("# All tools errors")
|
260 |
with gr.Row():
|
261 |
error_overall_plot = plot_error_data(error_all_df=error_overall_df)
|
262 |
with gr.Row():
|
263 |
+
gr.Markdown("# Error percentage per tool")
|
264 |
with gr.Row():
|
265 |
sel_tool = gr.Dropdown(
|
266 |
label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
|
|
|
283 |
tool_error_plot
|
284 |
|
285 |
with gr.Row():
|
286 |
+
gr.Markdown("# Tools distribution of errors per week")
|
287 |
|
288 |
with gr.Row():
|
289 |
choices = error_overall_df["request_month_year_week"].unique().tolist()
|
|
|
321 |
with gr.Accordion("About Olas Predict"):
|
322 |
gr.Markdown(about_olas_predict)
|
323 |
|
324 |
+
with gr.Accordion("About this dashboard"):
|
325 |
+
gr.Markdown(about_this_dashboard)
|
326 |
+
|
327 |
demo.queue(default_concurrency_limit=40).launch()
|
data/all_trades_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76583ca11eb853af0f328a3739379afb12919cdf4751a8df4fc0d710e09ce77e
|
3 |
+
size 2585132
|
data/delivers.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83a8e368360e97a07a7b7e1bf4b68cd4153a9cd8f2c3a37218ca2c25fa0004a7
|
3 |
+
size 533832215
|
data/fpmmTrades.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3783e00d33252efd8cec813cd9ede010d089f984b5189b3d2e03726ea4bc16c
|
3 |
+
size 6743682
|
data/fpmms.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b080d92b95e9cb78c83a458aa9fafb1b22079c364dde7837ab89bcfd33c50481
|
3 |
+
size 335554
|
data/requests.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c531cdd253c89a513fc52bf873fe8795e0a44ce6c033c89f07989d4f0932e424
|
3 |
+
size 18043976
|
data/summary_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4005bc0e5b1f940da6108a449f8a2a1feed75183dea917f5dcaac1f9cc64f6de
|
3 |
+
size 40468
|
data/t_map.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12faddc220fb5c6f9583b1029c19cb5a210ff3ae59f6fdef8a74667a7b36d53c
|
3 |
+
size 8678809
|
data/tools.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:166e8ec777aaa5fa8bfa2f62f22e753b5b2f32b2f8c4138f81282e99a0c03b69
|
3 |
+
size 536907540
|
tabs/about.py
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
-
|
2 |
about_olas_predict = """\
|
3 |
Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
|
4 |
Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' 🌊.
|
5 |
The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
|
6 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
about_olas_predict = """\
|
2 |
Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
|
3 |
Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' 🌊.
|
4 |
The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
|
5 |
+
"""
|
6 |
+
|
7 |
+
about_this_dashboard = """\
|
8 |
+
This dashboard is pulling data from the omen subgraph during some specific time window. As the data is distributed by weeks, it is possible that some weeks contain incomplete data not showing the total volume of information.
|
9 |
+
This is in particular relevant for:
|
10 |
+
* the first week: since we might have started collecting information not from the beginning of the week.
|
11 |
+
* the last week: some markets have not been closed yet and the information is not published yet.
|
12 |
+
"""
|