cyberosa commited on
Commit
0621b0b
·
1 Parent(s): 5f5eb85

Reducing parquet files. Time window two months

Browse files
app.py CHANGED
@@ -24,7 +24,7 @@ from tabs.error import (
24
  plot_tool_error_data,
25
  plot_week_error_data,
26
  )
27
- from tabs.about import about_olas_predict
28
 
29
 
30
  def get_logger():
@@ -151,20 +151,20 @@ with demo:
151
  with gr.Tabs():
152
  with gr.TabItem("🔥Trades Dashboard"):
153
  with gr.Row():
154
- gr.Markdown("# Plot of number of trades by week")
155
  with gr.Row():
156
  trades_by_week_plot = plot_trades_by_week(trades_df=trades_count_df)
157
  with gr.Row():
158
- gr.Markdown("# Plot of winning trades by week")
159
  with gr.Row():
160
  winning_trades_by_week_plot = plot_winning_trades_by_week(
161
  trades_df=trades_winning_rate_df
162
  )
163
  with gr.Row():
164
- gr.Markdown("# Plot of trade details")
165
  with gr.Row():
166
  trade_details_selector = gr.Dropdown(
167
- label="Select a trade",
168
  choices=[
169
  "mech calls",
170
  "collateral amount",
@@ -197,11 +197,11 @@ with demo:
197
 
198
  with gr.TabItem("🚀 Tool Winning Dashboard"):
199
  with gr.Row():
200
- gr.Markdown("# Plot showing overall winning rate")
201
 
202
  with gr.Row():
203
  winning_selector = gr.Dropdown(
204
- label="Select Metric",
205
  choices=["losses", "wins", "total_request", "win_perc"],
206
  value="win_perc",
207
  )
@@ -228,7 +228,7 @@ with demo:
228
  winning_plot
229
 
230
  with gr.Row():
231
- gr.Markdown("# Plot showing winning rate by tool")
232
 
233
  with gr.Row():
234
  sel_tool = gr.Dropdown(
@@ -256,11 +256,11 @@ with demo:
256
 
257
  with gr.TabItem("🏥 Tool Error Dashboard"):
258
  with gr.Row():
259
- gr.Markdown("# Plot showing overall error")
260
  with gr.Row():
261
  error_overall_plot = plot_error_data(error_all_df=error_overall_df)
262
  with gr.Row():
263
- gr.Markdown("# Plot showing error by tool")
264
  with gr.Row():
265
  sel_tool = gr.Dropdown(
266
  label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
@@ -283,7 +283,7 @@ with demo:
283
  tool_error_plot
284
 
285
  with gr.Row():
286
- gr.Markdown("# Plot showing error by week")
287
 
288
  with gr.Row():
289
  choices = error_overall_df["request_month_year_week"].unique().tolist()
@@ -321,4 +321,7 @@ with demo:
321
  with gr.Accordion("About Olas Predict"):
322
  gr.Markdown(about_olas_predict)
323
 
 
 
 
324
  demo.queue(default_concurrency_limit=40).launch()
 
24
  plot_tool_error_data,
25
  plot_week_error_data,
26
  )
27
+ from tabs.about import about_olas_predict, about_this_dashboard
28
 
29
 
30
  def get_logger():
 
151
  with gr.Tabs():
152
  with gr.TabItem("🔥Trades Dashboard"):
153
  with gr.Row():
154
+ gr.Markdown("# Number of trades per week")
155
  with gr.Row():
156
  trades_by_week_plot = plot_trades_by_week(trades_df=trades_count_df)
157
  with gr.Row():
158
+ gr.Markdown("# Percentage of winning trades per week")
159
  with gr.Row():
160
  winning_trades_by_week_plot = plot_winning_trades_by_week(
161
  trades_df=trades_winning_rate_df
162
  )
163
  with gr.Row():
164
+ gr.Markdown("# Trading metrics")
165
  with gr.Row():
166
  trade_details_selector = gr.Dropdown(
167
+ label="Select a trade metric",
168
  choices=[
169
  "mech calls",
170
  "collateral amount",
 
197
 
198
  with gr.TabItem("🚀 Tool Winning Dashboard"):
199
  with gr.Row():
200
+ gr.Markdown("# All tools winning performance")
201
 
202
  with gr.Row():
203
  winning_selector = gr.Dropdown(
204
+ label="Select the tool metric",
205
  choices=["losses", "wins", "total_request", "win_perc"],
206
  value="win_perc",
207
  )
 
228
  winning_plot
229
 
230
  with gr.Row():
231
+ gr.Markdown("# Winning performance by each tool")
232
 
233
  with gr.Row():
234
  sel_tool = gr.Dropdown(
 
256
 
257
  with gr.TabItem("🏥 Tool Error Dashboard"):
258
  with gr.Row():
259
+ gr.Markdown("# All tools errors")
260
  with gr.Row():
261
  error_overall_plot = plot_error_data(error_all_df=error_overall_df)
262
  with gr.Row():
263
+ gr.Markdown("# Error percentage per tool")
264
  with gr.Row():
265
  sel_tool = gr.Dropdown(
266
  label="Select a tool", choices=INC_TOOLS, value=INC_TOOLS[0]
 
283
  tool_error_plot
284
 
285
  with gr.Row():
286
+ gr.Markdown("# Tools distribution of errors per week")
287
 
288
  with gr.Row():
289
  choices = error_overall_df["request_month_year_week"].unique().tolist()
 
321
  with gr.Accordion("About Olas Predict"):
322
  gr.Markdown(about_olas_predict)
323
 
324
+ with gr.Accordion("About this dashboard"):
325
+ gr.Markdown(about_this_dashboard)
326
+
327
  demo.queue(default_concurrency_limit=40).launch()
data/all_trades_profitability.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c5ef5d1b82a0f8c8a39488b495a2aeb4a19de7c6105e6fb398a9fee123535f4
3
- size 8630525
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76583ca11eb853af0f328a3739379afb12919cdf4751a8df4fc0d710e09ce77e
3
+ size 2585132
data/delivers.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2949c13d191d3ac55a5599f2968760d0e77128cd3dd5d7b037e204d0141df788
3
- size 1836081292
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83a8e368360e97a07a7b7e1bf4b68cd4153a9cd8f2c3a37218ca2c25fa0004a7
3
+ size 533832215
data/fpmmTrades.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6394125674b9f438857c38848b1c855e8b131d01154b5c4fbc72e390ef5d2d5b
3
- size 21955797
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3783e00d33252efd8cec813cd9ede010d089f984b5189b3d2e03726ea4bc16c
3
+ size 6743682
data/fpmms.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:500ac95f7c2456b7373f07a9dcff524ddcdfc62200bf1d19f48d6ac69cf511ec
3
- size 330824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b080d92b95e9cb78c83a458aa9fafb1b22079c364dde7837ab89bcfd33c50481
3
+ size 335554
data/requests.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9f8273bd7fc4a129d625313af8a21205fb2f9425732bc6abe9aff401f8e0a810
3
- size 49704456
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c531cdd253c89a513fc52bf873fe8795e0a44ce6c033c89f07989d4f0932e424
3
+ size 18043976
data/summary_profitability.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9558c1992d4d3c83ed371e46c4cba0034e6801941082a78afdc5e7fe33b69d60
3
- size 53427
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4005bc0e5b1f940da6108a449f8a2a1feed75183dea917f5dcaac1f9cc64f6de
3
+ size 40468
data/t_map.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:06e54df3fef5c3b9ee213497ea1c56118e8dc3adce908aaeb62d45bede1a585f
3
- size 8360140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:12faddc220fb5c6f9583b1029c19cb5a210ff3ae59f6fdef8a74667a7b36d53c
3
+ size 8678809
data/tools.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:81c1f259f70d81cd64ef1c8b1bbb66484b17717c494ea4b61e464e98424b74ba
3
- size 1843263718
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:166e8ec777aaa5fa8bfa2f62f22e753b5b2f32b2f8c4138f81282e99a0c03b69
3
+ size 536907540
tabs/about.py CHANGED
@@ -1,6 +1,12 @@
1
-
2
  about_olas_predict = """\
3
  Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
4
  Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' 🌊.
5
  The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
6
- """
 
 
 
 
 
 
 
 
 
1
  about_olas_predict = """\
2
  Olas is a network of autonomous services that can run complex logic in a decentralized manner, interacting with on- and off-chain data autonomously and continuously. For other use cases check out [olas.network](https://olas.network/).
3
  Since 'Olas' means 'waves' in Spanish, it is sometimes referred to as the 'ocean of services' 🌊.
4
  The project is co-created by [Valory](https://www.valory.xyz/). Valory aspires to enable communities, organizations and countries to co-own AI systems, beginning with decentralized autonomous agents.
5
+ """
6
+
7
+ about_this_dashboard = """\
8
+ This dashboard is pulling data from the omen subgraph during some specific time window. As the data is distributed by weeks, it is possible that some weeks contain incomplete data not showing the total volume of information.
9
+ This is in particular relevant for:
10
+ * the first week: since we might have started collecting information not from the beginning of the week.
11
+ * the last week: some markets have not been closed yet and the information is not published yet.
12
+ """