remove copy
Browse files- tabs/error.py +3 -3
- tabs/tool_win.py +1 -1
- test.ipynb +24 -672
tabs/error.py
CHANGED
@@ -16,7 +16,7 @@ def set_error(row: pd.Series) -> bool:
|
|
16 |
|
17 |
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
18 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
19 |
-
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
20 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
22 |
error['error_perc'] = (error[True] / (error[False] + error[True])) * 100
|
@@ -50,7 +50,7 @@ def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
|
50 |
|
51 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
52 |
"""Plots the error data for the given tool."""
|
53 |
-
error_tool = error_df[error_df['tool'] == tool]
|
54 |
error_tool.columns = error_tool.columns.astype(str)
|
55 |
error_tool['error_perc'] = error_tool['error_perc'].apply(lambda x: round(x, 4))
|
56 |
|
@@ -71,7 +71,7 @@ def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
71 |
|
72 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
73 |
"""Plots the error data for the given week."""
|
74 |
-
error_week = error_df[error_df['request_month_year_week'] == week]
|
75 |
error_week.columns = error_week.columns.astype(str)
|
76 |
error_week['error_perc'] = error_week['error_perc'].apply(lambda x: round(x, 4))
|
77 |
return gr.BarPlot(
|
|
|
16 |
|
17 |
def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
18 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
19 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
20 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
21 |
error = tools_inc.groupby(['tool', 'request_month_year_week', 'error']).size().unstack().fillna(0).reset_index()
|
22 |
error['error_perc'] = (error[True] / (error[False] + error[True])) * 100
|
|
|
50 |
|
51 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
52 |
"""Plots the error data for the given tool."""
|
53 |
+
error_tool = error_df[error_df['tool'] == tool]
|
54 |
error_tool.columns = error_tool.columns.astype(str)
|
55 |
error_tool['error_perc'] = error_tool['error_perc'].apply(lambda x: round(x, 4))
|
56 |
|
|
|
71 |
|
72 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
73 |
"""Plots the error data for the given week."""
|
74 |
+
error_week = error_df[error_df['request_month_year_week'] == week]
|
75 |
error_week.columns = error_week.columns.astype(str)
|
76 |
error_week['error_perc'] = error_week['error_perc'].apply(lambda x: round(x, 4))
|
77 |
return gr.BarPlot(
|
tabs/tool_win.py
CHANGED
@@ -18,7 +18,7 @@ def set_error(row: pd.Series) -> bool:
|
|
18 |
|
19 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
20 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
21 |
-
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
22 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
23 |
tools_non_error = tools_inc[tools_inc['error'] != True]
|
24 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
|
|
18 |
|
19 |
def get_tool_winning_rate(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame:
|
20 |
"""Gets the tool winning rate data for the given tools and calculates the winning percentage."""
|
21 |
+
tools_inc = tools_df[tools_df['tool'].isin(inc_tools)]
|
22 |
tools_inc['error'] = tools_inc.apply(set_error, axis=1)
|
23 |
tools_non_error = tools_inc[tools_inc['error'] != True]
|
24 |
tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})
|
test.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -25,584 +25,35 @@
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
-
"execution_count":
|
29 |
-
"metadata": {},
|
30 |
-
"outputs": [],
|
31 |
-
"source": [
|
32 |
-
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/tools.parquet')\n",
|
33 |
-
"tools['trader_address'] = tools['trader_address'].str.lower()\n",
|
34 |
-
"fpmmTrades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/fpmmTrades.parquet')\n",
|
35 |
-
"# trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')"
|
36 |
-
]
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"cell_type": "code",
|
40 |
-
"execution_count": null,
|
41 |
-
"metadata": {},
|
42 |
-
"outputs": [],
|
43 |
-
"source": [
|
44 |
-
"IRRELEVANT_TOOLS = [\n",
|
45 |
-
" \"openai-text-davinci-002\",\n",
|
46 |
-
" \"openai-text-davinci-003\",\n",
|
47 |
-
" \"openai-gpt-3.5-turbo\",\n",
|
48 |
-
" \"openai-gpt-4\",\n",
|
49 |
-
" \"stabilityai-stable-diffusion-v1-5\",\n",
|
50 |
-
" \"stabilityai-stable-diffusion-xl-beta-v2-2-2\",\n",
|
51 |
-
" \"stabilityai-stable-diffusion-512-v2-1\",\n",
|
52 |
-
" \"stabilityai-stable-diffusion-768-v2-1\",\n",
|
53 |
-
" \"deepmind-optimization-strong\",\n",
|
54 |
-
" \"deepmind-optimization\",\n",
|
55 |
-
"]\n",
|
56 |
-
"QUERY_BATCH_SIZE = 1000\n",
|
57 |
-
"DUST_THRESHOLD = 10000000000000\n",
|
58 |
-
"INVALID_ANSWER_HEX = (\n",
|
59 |
-
" \"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"\n",
|
60 |
-
")\n",
|
61 |
-
"INVALID_ANSWER = -1\n",
|
62 |
-
"FPMM_CREATOR = \"0x89c5cc945dd550bcffb72fe42bff002429f46fec\"\n",
|
63 |
-
"DEFAULT_FROM_DATE = \"1970-01-01T00:00:00\"\n",
|
64 |
-
"DEFAULT_TO_DATE = \"2038-01-19T03:14:07\"\n",
|
65 |
-
"DEFAULT_FROM_TIMESTAMP = 0\n",
|
66 |
-
"DEFAULT_TO_TIMESTAMP = 2147483647\n",
|
67 |
-
"WXDAI_CONTRACT_ADDRESS = \"0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d\"\n",
|
68 |
-
"DEFAULT_MECH_FEE = 0.01\n",
|
69 |
-
"DUST_THRESHOLD = 10000000000000\n",
|
70 |
-
"SCRIPTS_DIR = Path('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/scripts')\n",
|
71 |
-
"ROOT_DIR = SCRIPTS_DIR.parent\n",
|
72 |
-
"DATA_DIR = ROOT_DIR / \"data\"\n",
|
73 |
-
"\n",
|
74 |
-
"class MarketState(Enum):\n",
|
75 |
-
" \"\"\"Market state\"\"\"\n",
|
76 |
-
"\n",
|
77 |
-
" OPEN = 1\n",
|
78 |
-
" PENDING = 2\n",
|
79 |
-
" FINALIZING = 3\n",
|
80 |
-
" ARBITRATING = 4\n",
|
81 |
-
" CLOSED = 5\n",
|
82 |
-
"\n",
|
83 |
-
" def __str__(self) -> str:\n",
|
84 |
-
" \"\"\"Prints the market status.\"\"\"\n",
|
85 |
-
" return self.name.capitalize()\n",
|
86 |
-
"\n",
|
87 |
-
"\n",
|
88 |
-
"class MarketAttribute(Enum):\n",
|
89 |
-
" \"\"\"Attribute\"\"\"\n",
|
90 |
-
"\n",
|
91 |
-
" NUM_TRADES = \"Num_trades\"\n",
|
92 |
-
" WINNER_TRADES = \"Winner_trades\"\n",
|
93 |
-
" NUM_REDEEMED = \"Num_redeemed\"\n",
|
94 |
-
" INVESTMENT = \"Investment\"\n",
|
95 |
-
" FEES = \"Fees\"\n",
|
96 |
-
" MECH_CALLS = \"Mech_calls\"\n",
|
97 |
-
" MECH_FEES = \"Mech_fees\"\n",
|
98 |
-
" EARNINGS = \"Earnings\"\n",
|
99 |
-
" NET_EARNINGS = \"Net_earnings\"\n",
|
100 |
-
" REDEMPTIONS = \"Redemptions\"\n",
|
101 |
-
" ROI = \"ROI\"\n",
|
102 |
-
"\n",
|
103 |
-
" def __str__(self) -> str:\n",
|
104 |
-
" \"\"\"Prints the attribute.\"\"\"\n",
|
105 |
-
" return self.value\n",
|
106 |
-
"\n",
|
107 |
-
" def __repr__(self) -> str:\n",
|
108 |
-
" \"\"\"Prints the attribute representation.\"\"\"\n",
|
109 |
-
" return self.name\n",
|
110 |
-
"\n",
|
111 |
-
" @staticmethod\n",
|
112 |
-
" def argparse(s: str) -> \"MarketAttribute\":\n",
|
113 |
-
" \"\"\"Performs string conversion to MarketAttribute.\"\"\"\n",
|
114 |
-
" try:\n",
|
115 |
-
" return MarketAttribute[s.upper()]\n",
|
116 |
-
" except KeyError as e:\n",
|
117 |
-
" raise ValueError(f\"Invalid MarketAttribute: {s}\") from e\n",
|
118 |
-
"\n",
|
119 |
-
"\n",
|
120 |
-
"ALL_TRADES_STATS_DF_COLS = [\n",
|
121 |
-
" \"trader_address\",\n",
|
122 |
-
" \"trade_id\",\n",
|
123 |
-
" \"creation_timestamp\",\n",
|
124 |
-
" \"title\",\n",
|
125 |
-
" \"market_status\",\n",
|
126 |
-
" \"collateral_amount\",\n",
|
127 |
-
" \"outcome_index\",\n",
|
128 |
-
" \"trade_fee_amount\",\n",
|
129 |
-
" \"outcomes_tokens_traded\",\n",
|
130 |
-
" \"current_answer\",\n",
|
131 |
-
" \"is_invalid\",\n",
|
132 |
-
" \"winning_trade\",\n",
|
133 |
-
" \"earnings\",\n",
|
134 |
-
" \"redeemed\",\n",
|
135 |
-
" \"redeemed_amount\",\n",
|
136 |
-
" \"num_mech_calls\",\n",
|
137 |
-
" \"mech_fee_amount\",\n",
|
138 |
-
" \"net_earnings\",\n",
|
139 |
-
" \"roi\",\n",
|
140 |
-
"]\n",
|
141 |
-
"\n",
|
142 |
-
"SUMMARY_STATS_DF_COLS = [\n",
|
143 |
-
" \"trader_address\",\n",
|
144 |
-
" \"num_trades\",\n",
|
145 |
-
" \"num_winning_trades\",\n",
|
146 |
-
" \"num_redeemed\",\n",
|
147 |
-
" \"total_investment\",\n",
|
148 |
-
" \"total_trade_fees\",\n",
|
149 |
-
" \"num_mech_calls\",\n",
|
150 |
-
" \"total_mech_fees\",\n",
|
151 |
-
" \"total_earnings\",\n",
|
152 |
-
" \"total_redeemed_amount\",\n",
|
153 |
-
" \"total_net_earnings\",\n",
|
154 |
-
" \"total_net_earnings_wo_mech_fees\",\n",
|
155 |
-
" \"total_roi\",\n",
|
156 |
-
" \"total_roi_wo_mech_fees\",\n",
|
157 |
-
" \"mean_mech_calls_per_trade\",\n",
|
158 |
-
" \"mean_mech_fee_amount_per_trade\",\n",
|
159 |
-
"]\n",
|
160 |
-
"headers = {\n",
|
161 |
-
" \"Accept\": \"application/json, multipart/mixed\",\n",
|
162 |
-
" \"Content-Type\": \"application/json\",\n",
|
163 |
-
"}\n",
|
164 |
-
"\n",
|
165 |
-
"\n",
|
166 |
-
"omen_xdai_trades_query = Template(\n",
|
167 |
-
" \"\"\"\n",
|
168 |
-
" {\n",
|
169 |
-
" fpmmTrades(\n",
|
170 |
-
" where: {\n",
|
171 |
-
" type: Buy,\n",
|
172 |
-
" fpmm_: {\n",
|
173 |
-
" creator: \"${fpmm_creator}\"\n",
|
174 |
-
" creationTimestamp_gte: \"${fpmm_creationTimestamp_gte}\",\n",
|
175 |
-
" creationTimestamp_lt: \"${fpmm_creationTimestamp_lte}\"\n",
|
176 |
-
" },\n",
|
177 |
-
" creationTimestamp_gte: \"${creationTimestamp_gte}\",\n",
|
178 |
-
" creationTimestamp_lte: \"${creationTimestamp_lte}\"\n",
|
179 |
-
" id_gt: \"${id_gt}\"\n",
|
180 |
-
" }\n",
|
181 |
-
" first: ${first}\n",
|
182 |
-
" orderBy: id\n",
|
183 |
-
" orderDirection: asc\n",
|
184 |
-
" ) {\n",
|
185 |
-
" id\n",
|
186 |
-
" title\n",
|
187 |
-
" collateralToken\n",
|
188 |
-
" outcomeTokenMarginalPrice\n",
|
189 |
-
" oldOutcomeTokenMarginalPrice\n",
|
190 |
-
" type\n",
|
191 |
-
" creator {\n",
|
192 |
-
" id\n",
|
193 |
-
" }\n",
|
194 |
-
" creationTimestamp\n",
|
195 |
-
" collateralAmount\n",
|
196 |
-
" collateralAmountUSD\n",
|
197 |
-
" feeAmount\n",
|
198 |
-
" outcomeIndex\n",
|
199 |
-
" outcomeTokensTraded\n",
|
200 |
-
" transactionHash\n",
|
201 |
-
" fpmm {\n",
|
202 |
-
" id\n",
|
203 |
-
" outcomes\n",
|
204 |
-
" title\n",
|
205 |
-
" answerFinalizedTimestamp\n",
|
206 |
-
" currentAnswer\n",
|
207 |
-
" isPendingArbitration\n",
|
208 |
-
" arbitrationOccurred\n",
|
209 |
-
" openingTimestamp\n",
|
210 |
-
" condition {\n",
|
211 |
-
" id\n",
|
212 |
-
" }\n",
|
213 |
-
" }\n",
|
214 |
-
" }\n",
|
215 |
-
" }\n",
|
216 |
-
" \"\"\"\n",
|
217 |
-
")\n",
|
218 |
-
"\n",
|
219 |
-
"\n",
|
220 |
-
"conditional_tokens_gc_user_query = Template(\n",
|
221 |
-
" \"\"\"\n",
|
222 |
-
" {\n",
|
223 |
-
" user(id: \"${id}\") {\n",
|
224 |
-
" userPositions(\n",
|
225 |
-
" first: ${first}\n",
|
226 |
-
" where: {\n",
|
227 |
-
" id_gt: \"${userPositions_id_gt}\"\n",
|
228 |
-
" }\n",
|
229 |
-
" orderBy: id\n",
|
230 |
-
" ) {\n",
|
231 |
-
" balance\n",
|
232 |
-
" id\n",
|
233 |
-
" position {\n",
|
234 |
-
" id\n",
|
235 |
-
" conditionIds\n",
|
236 |
-
" }\n",
|
237 |
-
" totalBalance\n",
|
238 |
-
" wrappedBalance\n",
|
239 |
-
" }\n",
|
240 |
-
" }\n",
|
241 |
-
" }\n",
|
242 |
-
" \"\"\"\n",
|
243 |
-
")\n",
|
244 |
-
"\n",
|
245 |
-
"\n",
|
246 |
-
"def _to_content(q: str) -> dict[str, Any]:\n",
|
247 |
-
" \"\"\"Convert the given query string to payload content, i.e., add it under a `queries` key and convert it to bytes.\"\"\"\n",
|
248 |
-
" finalized_query = {\n",
|
249 |
-
" \"query\": q,\n",
|
250 |
-
" \"variables\": None,\n",
|
251 |
-
" \"extensions\": {\"headers\": None},\n",
|
252 |
-
" }\n",
|
253 |
-
" return finalized_query\n",
|
254 |
-
"\n",
|
255 |
-
"\n",
|
256 |
-
"def _query_omen_xdai_subgraph(\n",
|
257 |
-
" from_timestamp: float,\n",
|
258 |
-
" to_timestamp: float,\n",
|
259 |
-
" fpmm_from_timestamp: float,\n",
|
260 |
-
" fpmm_to_timestamp: float,\n",
|
261 |
-
") -> dict[str, Any]:\n",
|
262 |
-
" \"\"\"Query the subgraph.\"\"\"\n",
|
263 |
-
" url = \"https://api.thegraph.com/subgraphs/name/protofire/omen-xdai\"\n",
|
264 |
-
"\n",
|
265 |
-
" grouped_results = defaultdict(list)\n",
|
266 |
-
" id_gt = \"\"\n",
|
267 |
-
"\n",
|
268 |
-
" while True:\n",
|
269 |
-
" query = omen_xdai_trades_query.substitute(\n",
|
270 |
-
" fpmm_creator=FPMM_CREATOR.lower(),\n",
|
271 |
-
" creationTimestamp_gte=int(from_timestamp),\n",
|
272 |
-
" creationTimestamp_lte=int(to_timestamp),\n",
|
273 |
-
" fpmm_creationTimestamp_gte=int(fpmm_from_timestamp),\n",
|
274 |
-
" fpmm_creationTimestamp_lte=int(fpmm_to_timestamp),\n",
|
275 |
-
" first=QUERY_BATCH_SIZE,\n",
|
276 |
-
" id_gt=id_gt,\n",
|
277 |
-
" )\n",
|
278 |
-
" content_json = _to_content(query)\n",
|
279 |
-
" res = requests.post(url, headers=headers, json=content_json)\n",
|
280 |
-
" result_json = res.json()\n",
|
281 |
-
" user_trades = result_json.get(\"data\", {}).get(\"fpmmTrades\", [])\n",
|
282 |
-
"\n",
|
283 |
-
" if not user_trades:\n",
|
284 |
-
" break\n",
|
285 |
-
"\n",
|
286 |
-
" for trade in user_trades:\n",
|
287 |
-
" fpmm_id = trade.get(\"fpmm\", {}).get(\"id\")\n",
|
288 |
-
" grouped_results[fpmm_id].append(trade)\n",
|
289 |
-
"\n",
|
290 |
-
" id_gt = user_trades[len(user_trades) - 1][\"id\"]\n",
|
291 |
-
"\n",
|
292 |
-
" all_results = {\n",
|
293 |
-
" \"data\": {\n",
|
294 |
-
" \"fpmmTrades\": [\n",
|
295 |
-
" trade\n",
|
296 |
-
" for trades_list in grouped_results.values()\n",
|
297 |
-
" for trade in trades_list\n",
|
298 |
-
" ]\n",
|
299 |
-
" }\n",
|
300 |
-
" }\n",
|
301 |
-
"\n",
|
302 |
-
" return all_results\n",
|
303 |
-
"\n",
|
304 |
-
"\n",
|
305 |
-
"def _query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]:\n",
|
306 |
-
" \"\"\"Query the subgraph.\"\"\"\n",
|
307 |
-
" url = \"https://api.thegraph.com/subgraphs/name/gnosis/conditional-tokens-gc\"\n",
|
308 |
-
"\n",
|
309 |
-
" all_results: dict[str, Any] = {\"data\": {\"user\": {\"userPositions\": []}}}\n",
|
310 |
-
" userPositions_id_gt = \"\"\n",
|
311 |
-
" while True:\n",
|
312 |
-
" query = conditional_tokens_gc_user_query.substitute(\n",
|
313 |
-
" id=creator.lower(),\n",
|
314 |
-
" first=QUERY_BATCH_SIZE,\n",
|
315 |
-
" userPositions_id_gt=userPositions_id_gt,\n",
|
316 |
-
" )\n",
|
317 |
-
" content_json = {\"query\": query}\n",
|
318 |
-
" res = requests.post(url, headers=headers, json=content_json)\n",
|
319 |
-
" result_json = res.json()\n",
|
320 |
-
" user_data = result_json.get(\"data\", {}).get(\"user\", {})\n",
|
321 |
-
"\n",
|
322 |
-
" if not user_data:\n",
|
323 |
-
" break\n",
|
324 |
-
"\n",
|
325 |
-
" user_positions = user_data.get(\"userPositions\", [])\n",
|
326 |
-
"\n",
|
327 |
-
" if user_positions:\n",
|
328 |
-
" all_results[\"data\"][\"user\"][\"userPositions\"].extend(user_positions)\n",
|
329 |
-
" userPositions_id_gt = user_positions[len(user_positions) - 1][\"id\"]\n",
|
330 |
-
" else:\n",
|
331 |
-
" break\n",
|
332 |
-
"\n",
|
333 |
-
" if len(all_results[\"data\"][\"user\"][\"userPositions\"]) == 0:\n",
|
334 |
-
" return {\"data\": {\"user\": None}}\n",
|
335 |
-
"\n",
|
336 |
-
" return all_results\n",
|
337 |
-
"\n",
|
338 |
-
"\n",
|
339 |
-
"def convert_hex_to_int(x: Union[str, float]) -> Union[int, float]:\n",
|
340 |
-
" \"\"\"Convert hex to int\"\"\"\n",
|
341 |
-
" if isinstance(x, float):\n",
|
342 |
-
" return np.nan\n",
|
343 |
-
" elif isinstance(x, str):\n",
|
344 |
-
" if x == INVALID_ANSWER_HEX:\n",
|
345 |
-
" return -1\n",
|
346 |
-
" else:\n",
|
347 |
-
" return int(x, 16)\n",
|
348 |
-
"\n",
|
349 |
-
"\n",
|
350 |
-
"def wei_to_unit(wei: int) -> float:\n",
|
351 |
-
" \"\"\"Converts wei to currency unit.\"\"\"\n",
|
352 |
-
" return wei / 10**18\n",
|
353 |
-
"\n",
|
354 |
-
"\n",
|
355 |
-
"def _is_redeemed(user_json: dict[str, Any], fpmmTrade: dict[str, Any]) -> bool:\n",
|
356 |
-
" \"\"\"Returns whether the user has redeemed the position.\"\"\"\n",
|
357 |
-
" user_positions = user_json[\"data\"][\"user\"][\"userPositions\"]\n",
|
358 |
-
" outcomes_tokens_traded = int(fpmmTrade[\"outcomeTokensTraded\"])\n",
|
359 |
-
" condition_id = fpmmTrade[\"fpmm.condition.id\"]\n",
|
360 |
-
"\n",
|
361 |
-
" for position in user_positions:\n",
|
362 |
-
" position_condition_ids = position[\"position\"][\"conditionIds\"]\n",
|
363 |
-
" balance = int(position[\"balance\"])\n",
|
364 |
-
"\n",
|
365 |
-
" if condition_id in position_condition_ids:\n",
|
366 |
-
" if balance == 0:\n",
|
367 |
-
" return True\n",
|
368 |
-
" # return early\n",
|
369 |
-
" return False\n",
|
370 |
-
" return False\n"
|
371 |
-
]
|
372 |
-
},
|
373 |
-
{
|
374 |
-
"cell_type": "code",
|
375 |
-
"execution_count": null,
|
376 |
-
"metadata": {},
|
377 |
-
"outputs": [],
|
378 |
-
"source": [
|
379 |
-
"def determine_market_status(trade, current_answer):\n",
|
380 |
-
" \"\"\"Determine the market status of a trade.\"\"\"\n",
|
381 |
-
" if current_answer is np.nan and time.time() >= int(trade[\"fpmm.openingTimestamp\"]):\n",
|
382 |
-
" return MarketState.PENDING\n",
|
383 |
-
" elif current_answer == np.nan:\n",
|
384 |
-
" return MarketState.OPEN\n",
|
385 |
-
" elif trade[\"fpmm.isPendingArbitration\"]:\n",
|
386 |
-
" return MarketState.ARBITRATING\n",
|
387 |
-
" elif time.time() < int(trade[\"fpmm.answerFinalizedTimestamp\"]):\n",
|
388 |
-
" return MarketState.FINALIZING\n",
|
389 |
-
" return MarketState.CLOSED"
|
390 |
-
]
|
391 |
-
},
|
392 |
-
{
|
393 |
-
"cell_type": "code",
|
394 |
-
"execution_count": null,
|
395 |
-
"metadata": {},
|
396 |
-
"outputs": [],
|
397 |
-
"source": [
|
398 |
-
"all_traders = []\n",
|
399 |
-
"\n",
|
400 |
-
"for trader_address in tqdm(\n",
|
401 |
-
" fpmmTrades[\"trader_address\"].unique(),\n",
|
402 |
-
" total=len(fpmmTrades[\"trader_address\"].unique()),\n",
|
403 |
-
" desc=\"Analysing creators\"\n",
|
404 |
-
"):\n",
|
405 |
-
" trades = fpmmTrades[fpmmTrades[\"trader_address\"] == trader_address]\n",
|
406 |
-
" tools_usage = tools[tools[\"trader_address\"].str.lower() == trader_address]\n",
|
407 |
-
"\n",
|
408 |
-
" # Prepare the DataFrame\n",
|
409 |
-
" trades_df = pd.DataFrame(columns=ALL_TRADES_STATS_DF_COLS)\n",
|
410 |
-
"\n",
|
411 |
-
" if trades.empty:\n",
|
412 |
-
" continue\n",
|
413 |
-
"\n",
|
414 |
-
" # Fetch user's conditional tokens gc graph\n",
|
415 |
-
" try:\n",
|
416 |
-
" user_json = _query_conditional_tokens_gc_subgraph(trader_address)\n",
|
417 |
-
" except Exception as e:\n",
|
418 |
-
" print(f\"Error fetching user data: {e}\")\n",
|
419 |
-
" raise e\n",
|
420 |
-
" \n",
|
421 |
-
" break"
|
422 |
-
]
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"cell_type": "code",
|
426 |
-
"execution_count": null,
|
427 |
-
"metadata": {},
|
428 |
-
"outputs": [],
|
429 |
-
"source": [
|
430 |
-
"for i, trade in tqdm(trades.iterrows(), total=len(trades), desc=\"Analysing trades\"):\n",
|
431 |
-
" if not trade['fpmm.currentAnswer']:\n",
|
432 |
-
" print(f\"Skipping trade {i} because currentAnswer is NaN\")\n",
|
433 |
-
" continue\n",
|
434 |
-
"\n",
|
435 |
-
" creation_timestamp_utc = datetime.datetime.fromtimestamp(\n",
|
436 |
-
" int(trade[\"creationTimestamp\"]), tz=datetime.timezone.utc\n",
|
437 |
-
" )\n",
|
438 |
-
" collateral_amount = wei_to_unit(float(trade[\"collateralAmount\"]))\n",
|
439 |
-
" fee_amount = wei_to_unit(float(trade[\"feeAmount\"]))\n",
|
440 |
-
" outcome_tokens_traded = wei_to_unit(float(trade[\"outcomeTokensTraded\"]))\n",
|
441 |
-
" earnings, winner_trade = (0, False)\n",
|
442 |
-
" redemption = _is_redeemed(user_json, trade)\n",
|
443 |
-
" current_answer = trade[\"fpmm.currentAnswer\"]\n",
|
444 |
-
" # Determine market status\n",
|
445 |
-
" market_status = determine_market_status(trade, current_answer)\n",
|
446 |
-
"\n",
|
447 |
-
" # Skip non-closed markets\n",
|
448 |
-
" if market_status != MarketState.CLOSED:\n",
|
449 |
-
" print(\n",
|
450 |
-
" f\"Skipping trade {i} because market is not closed. Market Status: {market_status}\"\n",
|
451 |
-
" )\n",
|
452 |
-
" continue\n",
|
453 |
-
" current_answer = convert_hex_to_int(current_answer)\n",
|
454 |
-
"\n",
|
455 |
-
" # Compute invalidity\n",
|
456 |
-
" is_invalid = current_answer == INVALID_ANSWER\n",
|
457 |
-
"\n",
|
458 |
-
" # Compute earnings and winner trade status\n",
|
459 |
-
" if is_invalid:\n",
|
460 |
-
" earnings = collateral_amount\n",
|
461 |
-
" winner_trade = False\n",
|
462 |
-
" elif int(trade[\"outcomeIndex\"]) == current_answer:\n",
|
463 |
-
" earnings = outcome_tokens_traded\n",
|
464 |
-
" winner_trade = True\n",
|
465 |
-
"\n",
|
466 |
-
" # Compute mech calls\n",
|
467 |
-
" num_mech_calls = (\n",
|
468 |
-
" tools_usage[\"prompt_request\"].apply(lambda x: trade[\"title\"] in x).sum()\n",
|
469 |
-
" )\n",
|
470 |
-
" net_earnings = (\n",
|
471 |
-
" earnings\n",
|
472 |
-
" - fee_amount\n",
|
473 |
-
" - (num_mech_calls * DEFAULT_MECH_FEE)\n",
|
474 |
-
" - collateral_amount\n",
|
475 |
-
" )\n",
|
476 |
-
"\n",
|
477 |
-
" break"
|
478 |
-
]
|
479 |
-
},
|
480 |
-
{
|
481 |
-
"cell_type": "code",
|
482 |
-
"execution_count": null,
|
483 |
"metadata": {},
|
484 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
"source": [
|
486 |
-
"
|
487 |
-
"
|
488 |
-
"# fpmmTrades[\"trader_address\"].unique(),\n",
|
489 |
-
"# total=len(fpmmTrades[\"trader_address\"].unique()),\n",
|
490 |
-
"# desc=\"Analysing creators\",\n",
|
491 |
-
"# ):\n",
|
492 |
-
"\n",
|
493 |
-
"# trades = fpmmTrades[fpmmTrades[\"trader_address\"] == trader_address]\n",
|
494 |
-
"# tools_usage = tools[tools[\"trader_address\"] == trader_address]\n",
|
495 |
"\n",
|
496 |
-
"
|
497 |
-
"
|
498 |
-
"# if trades.empty:\n",
|
499 |
-
"# continue\n",
|
500 |
"\n",
|
501 |
-
"
|
502 |
-
"
|
503 |
-
"# user_json = _query_conditional_tokens_gc_subgraph(trader_address)\n",
|
504 |
-
"# except Exception as e:\n",
|
505 |
-
"# print(f\"Error fetching user data: {e}\")\n",
|
506 |
-
"# raise e\n",
|
507 |
-
"\n",
|
508 |
-
"# # Iterate over the trades\n",
|
509 |
-
"# for i, trade in tqdm(trades.iterrows(), total=len(trades), desc=\"Analysing trades\"):\n",
|
510 |
-
"# try:\n",
|
511 |
-
"# if not trade['fpmm.currentAnswer']:\n",
|
512 |
-
"# print(f\"Skipping trade {i} because currentAnswer is NaN\")\n",
|
513 |
-
"# continue\n",
|
514 |
-
"# # Parsing and computing shared values\n",
|
515 |
-
"# creation_timestamp_utc = datetime.datetime.fromtimestamp(\n",
|
516 |
-
"# int(trade[\"creationTimestamp\"]), tz=datetime.timezone.utc\n",
|
517 |
-
"# )\n",
|
518 |
-
"# collateral_amount = wei_to_unit(float(trade[\"collateralAmount\"]))\n",
|
519 |
-
"# fee_amount = wei_to_unit(float(trade[\"feeAmount\"]))\n",
|
520 |
-
"# outcome_tokens_traded = wei_to_unit(float(trade[\"outcomeTokensTraded\"]))\n",
|
521 |
-
"# earnings, winner_trade = (0, False)\n",
|
522 |
-
"# redemption = _is_redeemed(user_json, trade)\n",
|
523 |
-
"# current_answer = trade[\"fpmm.currentAnswer\"]\n",
|
524 |
-
"# # Determine market status\n",
|
525 |
-
"# market_status = determine_market_status(trade, current_answer)\n",
|
526 |
-
"\n",
|
527 |
-
"# # Skip non-closed markets\n",
|
528 |
-
"# if market_status != MarketState.CLOSED:\n",
|
529 |
-
"# print(\n",
|
530 |
-
"# f\"Skipping trade {i} because market is not closed. Market Status: {market_status}\"\n",
|
531 |
-
"# )\n",
|
532 |
-
"# continue\n",
|
533 |
-
"# current_answer = convert_hex_to_int(current_answer)\n",
|
534 |
-
"\n",
|
535 |
-
"# # Compute invalidity\n",
|
536 |
-
"# is_invalid = current_answer == INVALID_ANSWER\n",
|
537 |
-
"\n",
|
538 |
-
"# # Compute earnings and winner trade status\n",
|
539 |
-
"# if is_invalid:\n",
|
540 |
-
"# earnings = collateral_amount\n",
|
541 |
-
"# winner_trade = False\n",
|
542 |
-
"# elif trade[\"outcomeIndex\"] == current_answer:\n",
|
543 |
-
"# earnings = outcome_tokens_traded\n",
|
544 |
-
"# winner_trade = True\n",
|
545 |
-
"\n",
|
546 |
-
"# # Compute mech calls\n",
|
547 |
-
"# num_mech_calls = (\n",
|
548 |
-
"# tools_usage[\"prompt_request\"].apply(lambda x: trade[\"title\"] in x).sum()\n",
|
549 |
-
"# )\n",
|
550 |
-
"# net_earnings = (\n",
|
551 |
-
"# earnings\n",
|
552 |
-
"# - fee_amount\n",
|
553 |
-
"# - (num_mech_calls * DEFAULT_MECH_FEE)\n",
|
554 |
-
"# - collateral_amount\n",
|
555 |
-
"# )\n",
|
556 |
-
"\n",
|
557 |
-
"# # Assign values to DataFrame\n",
|
558 |
-
"# trades_df.loc[i] = {\n",
|
559 |
-
"# \"trader_address\": trader_address,\n",
|
560 |
-
"# \"trade_id\": trade[\"id\"],\n",
|
561 |
-
"# \"market_status\": market_status.name,\n",
|
562 |
-
"# \"creation_timestamp\": creation_timestamp_utc,\n",
|
563 |
-
"# \"title\": trade[\"title\"],\n",
|
564 |
-
"# \"collateral_amount\": collateral_amount,\n",
|
565 |
-
"# \"outcome_index\": trade[\"outcomeIndex\"],\n",
|
566 |
-
"# \"trade_fee_amount\": fee_amount,\n",
|
567 |
-
"# \"outcomes_tokens_traded\": outcome_tokens_traded,\n",
|
568 |
-
"# \"current_answer\": current_answer,\n",
|
569 |
-
"# \"is_invalid\": is_invalid,\n",
|
570 |
-
"# \"winning_trade\": winner_trade,\n",
|
571 |
-
"# \"earnings\": earnings,\n",
|
572 |
-
"# \"redeemed\": redemption,\n",
|
573 |
-
"# \"redeemed_amount\": earnings if redemption else 0,\n",
|
574 |
-
"# \"num_mech_calls\": num_mech_calls,\n",
|
575 |
-
"# \"mech_fee_amount\": num_mech_calls * DEFAULT_MECH_FEE,\n",
|
576 |
-
"# \"net_earnings\": net_earnings,\n",
|
577 |
-
"# \"roi\": net_earnings / (collateral_amount + fee_amount + num_mech_calls * DEFAULT_MECH_FEE),\n",
|
578 |
-
"# }\n",
|
579 |
-
"# except Exception as e:\n",
|
580 |
-
"# print(f\"Error processing trade {i}: {e}\")\n",
|
581 |
-
"# raise e"
|
582 |
]
|
583 |
},
|
584 |
{
|
585 |
"cell_type": "code",
|
586 |
-
"execution_count":
|
587 |
-
"metadata": {},
|
588 |
-
"outputs": [],
|
589 |
-
"source": [
|
590 |
-
"import pandas as pd"
|
591 |
-
]
|
592 |
-
},
|
593 |
-
{
|
594 |
-
"cell_type": "code",
|
595 |
-
"execution_count": 2,
|
596 |
-
"metadata": {},
|
597 |
-
"outputs": [],
|
598 |
-
"source": [
|
599 |
-
"trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')\n",
|
600 |
-
"tools = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/tools.parquet')"
|
601 |
-
]
|
602 |
-
},
|
603 |
-
{
|
604 |
-
"cell_type": "code",
|
605 |
-
"execution_count": 3,
|
606 |
"metadata": {},
|
607 |
"outputs": [
|
608 |
{
|
@@ -617,112 +68,13 @@
|
|
617 |
" dtype='object')"
|
618 |
]
|
619 |
},
|
620 |
-
"execution_count":
|
621 |
"metadata": {},
|
622 |
"output_type": "execute_result"
|
623 |
}
|
624 |
],
|
625 |
"source": [
|
626 |
-
"
|
627 |
-
]
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"cell_type": "code",
|
631 |
-
"execution_count": 4,
|
632 |
-
"metadata": {},
|
633 |
-
"outputs": [],
|
634 |
-
"source": [
|
635 |
-
"trades = pd.read_parquet('/Users/arshath/play/openautonomy/olas-prediction-live-dashboard/data/all_trades_profitability.parquet')\n",
|
636 |
-
"trades['creation_timestamp'] = pd.to_datetime(trades['creation_timestamp'], unit='s')\n",
|
637 |
-
"trades = trades[trades['creation_timestamp'].dt.year == 2024]\n",
|
638 |
-
"trades_winning = trades.groupby(['title','winning_trade']).size().unstack().fillna(0)\n",
|
639 |
-
"trades_winning_perc = trades_winning[True] / (trades_winning[True] + trades_winning[False])\n",
|
640 |
-
"trades_winning_perc = trades_winning_perc.reset_index()\n",
|
641 |
-
"trades_winning_perc.columns = ['title', 'winning_trade_perc']\n",
|
642 |
-
"def bucket_winning_trade_perc(x):\n",
|
643 |
-
" if x < 0.1:\n",
|
644 |
-
" return 0.1\n",
|
645 |
-
" elif x < 0.2:\n",
|
646 |
-
" return 0.2\n",
|
647 |
-
" elif x < 0.3:\n",
|
648 |
-
" return 0.3\n",
|
649 |
-
" elif x < 0.4:\n",
|
650 |
-
" return 0.4\n",
|
651 |
-
" elif x < 0.5:\n",
|
652 |
-
" return 0.5\n",
|
653 |
-
" elif x < 0.6:\n",
|
654 |
-
" return 0.6\n",
|
655 |
-
" elif x < 0.7:\n",
|
656 |
-
" return 0.7\n",
|
657 |
-
" elif x < 0.8:\n",
|
658 |
-
" return 0.8\n",
|
659 |
-
" elif x < 0.9:\n",
|
660 |
-
" return 0.9\n",
|
661 |
-
" else:\n",
|
662 |
-
" return 1\n",
|
663 |
-
"\n",
|
664 |
-
"trades_winning_perc['winning_trade_perc_bucket'] = trades_winning_perc['winning_trade_perc'].apply(bucket_winning_trade_perc)\n",
|
665 |
-
"trades_winning_perc['winning_trade_perc_bucket'].plot(kind='hist', bins=10)"
|
666 |
-
]
|
667 |
-
},
|
668 |
-
{
|
669 |
-
"cell_type": "code",
|
670 |
-
"execution_count": 8,
|
671 |
-
"metadata": {},
|
672 |
-
"outputs": [],
|
673 |
-
"source": []
|
674 |
-
},
|
675 |
-
{
|
676 |
-
"cell_type": "code",
|
677 |
-
"execution_count": 13,
|
678 |
-
"metadata": {},
|
679 |
-
"outputs": [],
|
680 |
-
"source": []
|
681 |
-
},
|
682 |
-
{
|
683 |
-
"cell_type": "code",
|
684 |
-
"execution_count": 16,
|
685 |
-
"metadata": {},
|
686 |
-
"outputs": [],
|
687 |
-
"source": [
|
688 |
-
"\n"
|
689 |
-
]
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"cell_type": "code",
|
693 |
-
"execution_count": 20,
|
694 |
-
"metadata": {},
|
695 |
-
"outputs": [],
|
696 |
-
"source": []
|
697 |
-
},
|
698 |
-
{
|
699 |
-
"cell_type": "code",
|
700 |
-
"execution_count": 21,
|
701 |
-
"metadata": {},
|
702 |
-
"outputs": [
|
703 |
-
{
|
704 |
-
"data": {
|
705 |
-
"text/plain": [
|
706 |
-
"<Axes: ylabel='Frequency'>"
|
707 |
-
]
|
708 |
-
},
|
709 |
-
"execution_count": 21,
|
710 |
-
"metadata": {},
|
711 |
-
"output_type": "execute_result"
|
712 |
-
},
|
713 |
-
{
|
714 |
-
"data": {
|
715 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkx0lEQVR4nO3de3BU9f3/8deGsAvBXAiYbFIidxQEZASNEbAiGQJhKAgzFUEMNoWqiVUiKnhDxRJERdQitBYTmIIoLaICRiHcSg1eIoiCIlcjTTagSDaELyGX8/vDHzuuXCSbTXb58HzM7Iznsmff21ObZ8+eTWyWZVkCAAAwVEigBwAAAGhIxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAo4UGeoBgUFtbq+LiYoWHh8tmswV6HAAAcB4sy1J5ebni4+MVEnL26zfEjqTi4mIlJCQEegwAAOCD7777Tm3atDnrdmJHUnh4uKSf/sOKiIgI8DQAAOB8uN1uJSQkeH6Onw2xI3k+uoqIiCB2AAC4wPzaLSjcoAwAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKOFBnoAAGho7aasCvQIdXZg5tBAjwAYgys7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADBaaKAHMF27KasCPUKdHZg5NNAjAADgN1zZAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABGI3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYLaCxk52drWuuuUbh4eGKiYnRiBEjtGvXLq99brzxRtlsNq/HnXfe6bVPUVGRhg4dqrCwMMXExOiBBx5QdXV1Y74VAAAQpEID+eIbN25URkaGrrnmGlVXV+vhhx/WoEGDtHPnTrVo0cKz34QJE/TUU095lsPCwjz/XFNTo6FDh8rpdOrDDz9USUmJbr/9djVt2lQzZsxo1PcDAACCT0BjJy8vz2s5NzdXMTExKiws1A033OBZHxYWJqfTecZjfPDBB9q5c6fWrl2r2NhY9erVS9OnT9dDDz2kJ554Qna7vUHfAwAACG5Bdc9OWVmZJCk6Otpr/eLFi9W6dWt1795dU6dO1fHjxz3bCgoK1KNHD8XGxnrWpaSkyO12a8eOHWd8ncrKSrndbq8HAAAwU0Cv7PxcbW2t7rvvPvXt21fdu3f3rB8zZozatm2r+Ph4bd++XQ899JB27dql5cuXS5JcLpdX6EjyLLtcrjO+VnZ2tp588skGeicAACCYBE3sZGRk6Msvv9TmzZu91k+cONHzzz169FBcXJwGDhyovXv3qmPHjj691tSpU5WVleVZdrvdSkhI8G1wAAAQ1ILiY6zMzEytXLlS69evV5s2bc65b2JioiRpz549kiSn06nS0lKvfU4tn+0+H4fDoYiICK8HAAAwU0Bjx7IsZWZm6q233tK6devUvn37X33Otm3bJElxcXGSpKSkJH3xxRc6dOiQZ581a9YoIiJC3bp1a5C5AQDAhSOgH2NlZGRoyZIlevvttxUeHu65xyYyMlLNmzfX3r17tWTJEqWmpqpVq1bavn27Jk2apBtuuEE9e/aUJA0aNEjdunXTuHHjNGvWLLlcLj366KPKyMiQw+EI5NsDAABBIKCxM2/ePEk//eLAn8vJydH48eNlt9u1du1azZkzRxUVFUpISNCoUaP06KOPevZt0qSJVq5cqbvuuktJSUlq0aKF0tLSvH4vDwAApmg3ZVWgR6izAzOHBvT1Axo7lmWdc3tCQoI2btz4q8dp27atVq9e7a+xAACAQYLiBmUAAICGQuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjhQZ6AAAXlnZTVgV6BACoE67sAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAav2cHAILQhfj7jA7MHBroEYAz4soOAAAwGrEDAACMRuwAAACjETsAAMBoAY2d7OxsXXPNNQoPD1dMTIxGjBihXbt2ee1z4sQJZWRkqFWrVrrkkks0atQolZaWeu1TVFSkoUOHKiwsTDExMXrggQdUXV3dmG8FAAAEqYDGzsaNG5WRkaEtW7ZozZo1qqqq0qBBg1RRUeHZZ9KkSXr33Xe1bNkybdy4UcXFxRo5cqRne01NjYYOHaqTJ0/qww8/1MKFC5Wbm6vHH388EG8JAAAEmYB+9TwvL89rOTc3VzExMSosLNQNN9ygsrIyLViwQEuWLNFNN90kScrJyVHXrl21ZcsWXXfddfrggw+0c+dOrV27VrGxserVq5emT5+uhx56SE888YTsdnsg3hoAAAgSQXXPTllZmSQpOjpaklRYWKiqqiolJyd79rniiit02WWXqaCgQJJUUFCgHj16KDY21rNPSkqK3G63duzY0YjTAwCAYBQ0v1SwtrZW9913n/r27avu3btLklwul+x2u6Kiorz2jY2Nlcvl8uzz89A5tf3UtjOprKxUZWWlZ9ntdvvrbQAAgCATNFd2MjIy9OWXX2rp0qUN/lrZ2dmKjIz0PBISEhr8NQEAQGAERexkZmZq5cqVWr9+vdq0aeNZ73Q6dfLkSR09etRr/9LSUjmdTs8+v/x21qnlU/v80tSpU1VWVuZ5fPfdd358NwAAIJgENHYsy1JmZqbeeustrVu3Tu3bt/fa3rt3bzVt2lT5+fmedbt27VJRUZGSkpIkSUlJSfriiy906NAhzz5r1qxRRESEunXrdsbXdTgcioiI8HoAAAAzBfSenYyMDC1ZskRvv/22wsPDPffYREZGqnnz5oqMjFR6erqysrIUHR2tiIgI3XPPPUpKStJ1110nSRo0aJC6deumcePGadasWXK5XHr00UeVkZEhh8MRyLcHAACCQEBjZ968eZKkG2+80Wt9Tk6Oxo8fL0l64YUXFBISolGjRqmyslIpKSl65ZVXPPs2adJEK1eu1F133aWkpCS1aNFCaWlpeuqppxrrbQAAgCAW0NixLOtX92nWrJnmzp2ruXPnnnWftm3bavXq1f4cDQAAGCIoblAGAABoKEHze3aAi027KasCPQIAXBS4sgMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjMa3sQAAfnEhfsPwwMyhgR4BjYArOwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwmk+xs2/fPn/PAQAA0CB8ip1OnTppwIAB+uc//6kTJ074eyYAAAC/8Sl2PvvsM/Xs2VNZWVlyOp3605/+pI8//tjfswEAANSbT7HTq1cvvfjiiyouLtZrr72mkpIS9evXT927d9fs2bN1+PBhf88JAADgk3rdoBwaGqqRI0dq2bJleuaZZ7Rnzx5NnjxZCQkJuv3221VSUuKvOQEAAHxSr9j59NNPdffddysuLk6zZ8/W5MmTtXfvXq1Zs0bFxcUaPny4v+YEAADwSagvT5o9e7ZycnK0a9cupaamatGiRUpNTVVIyE/t1L59e+Xm5qpdu3b+nBUAAKDOfIqdefPm6Q9/+IPGjx+vuLi4M+4TExOjBQsW1Gs4AACA+vIpdnbv3v2r+9jtdqWlpflyeAAAAL/x6Z6dnJwcLVu27LT1y5Yt08KFC+s9FAAAgL/4FDvZ2dlq3br1aetjYmI0Y8aMeg8FAADgLz7FTlFRkdq3b3/a+rZt26qoqKjeQwEAAPiLT7ETExOj7du3n7b+888/V6tWreo9FAAAgL/4FDu33nqr/vznP2v9+vWqqalRTU2N1q1bp3vvvVejR4/294wAAAA+8+nbWNOnT9eBAwc0cOBAhYb+dIja2lrdfvvt3LMDAACCik+xY7fb9cYbb2j69On6/PPP1bx5c/Xo0UNt27b193wAADSYdlNWBXoENAKfYueULl26qEuXLv6aBQAAwO98ip2amhrl5uYqPz9fhw4dUm1trdf2devW+WU4AACA+vIpdu69917l5uZq6NCh6t69u2w2m7/nAgAA8AufYmfp0qV68803lZqa6u95AAAA/Mqnr57b7XZ16tTJ37MAAAD4nU+xc//99+vFF1+UZVn+ngcAAMCvfPoYa/PmzVq/fr3ee+89XXnllWratKnX9uXLl/tlOAAAgPryKXaioqJ08803+3sWAAAAv/MpdnJycvw9BwAAQIPw6Z4dSaqurtbatWv1t7/9TeXl5ZKk4uJiHTt2zG/DAQAA1JdPsfPtt9+qR48eGj58uDIyMnT48GFJ0jPPPKPJkyef93E2bdqkYcOGKT4+XjabTStWrPDaPn78eNlsNq/H4MGDvfY5cuSIxo4dq4iICEVFRSk9PZ3gAgAAHj7Fzr333qs+ffroxx9/VPPmzT3rb775ZuXn55/3cSoqKnTVVVdp7ty5Z91n8ODBKikp8Txef/11r+1jx47Vjh07tGbNGq1cuVKbNm3SxIkT6/6mAACAkXy6Z+c///mPPvzwQ9ntdq/17dq10//+97/zPs6QIUM0ZMiQc+7jcDjkdDrPuO2rr75SXl6ePvnkE/Xp00eS9PLLLys1NVXPPfec4uPjz3sWAABgJp+u7NTW1qqmpua09QcPHlR4eHi9h/q5DRs2KCYmRpdffrnuuusu/fDDD55tBQUFioqK8oSOJCUnJyskJEQfffTRWY9ZWVkpt9vt9QAAAGbyKXYGDRqkOXPmeJZtNpuOHTumadOm+fVPSAwePFiLFi1Sfn6+nnnmGW3cuFFDhgzxhJbL5VJMTIzXc0JDQxUdHS2Xy3XW42ZnZysyMtLzSEhI8NvMAAAguPj0Mdbzzz+vlJQUdevWTSdOnNCYMWO0e/dutW7d+rR7aupj9OjRnn/u0aOHevbsqY4dO2rDhg0aOHCgz8edOnWqsrKyPMtut5vgAQDAUD7FTps2bfT5559r6dKl2r59u44dO6b09HSNHTvW64Zlf+vQoYNat26tPXv2aODAgXI6nTp06JDXPtXV1Tpy5MhZ7/ORfroPyOFwNNicAAAgePgUO9JPHxfddttt/pzlVx08eFA//PCD4uLiJElJSUk6evSoCgsL1bt3b0nSunXrVFtbq8TExEadDQAABCefYmfRokXn3H777bef13GOHTumPXv2eJb379+vbdu2KTo6WtHR0XryySc1atQoOZ1O7d27Vw8++KA6deqklJQUSVLXrl01ePBgTZgwQfPnz1dVVZUyMzM1evRovokFAAAk+Rg79957r9dyVVWVjh8/LrvdrrCwsPOOnU8//VQDBgzwLJ+6jyYtLU3z5s3T9u3btXDhQh09elTx8fEaNGiQpk+f7vUR1OLFi5WZmamBAwcqJCREo0aN0ksvveTL2wIAAAbyKXZ+/PHH09bt3r1bd911lx544IHzPs6NN94oy7LOuv3999//1WNER0dryZIl5/2aAADg4uLz38b6pc6dO2vmzJmnXfUBAAAIJL/FjvTTTcvFxcX+PCQAAEC9+PQx1jvvvOO1bFmWSkpK9Ne//lV9+/b1y2AAAAD+4FPsjBgxwmvZZrPp0ksv1U033aTnn3/eH3MBAAD4hU+xU1tb6+85AAAAGoRf79kBAAAINj5d2fn535X6NbNnz/blJQAAAPzCp9jZunWrtm7dqqqqKl1++eWSpG+++UZNmjTR1Vdf7dnPZrP5Z0oAAAAf+RQ7w4YNU3h4uBYuXKiWLVtK+ukXDd5xxx3q37+/7r//fr8OCQAA4Cuf7tl5/vnnlZ2d7QkdSWrZsqWefvppvo0FAACCik+x43a7dfjw4dPWHz58WOXl5fUeCgAAwF98ip2bb75Zd9xxh5YvX66DBw/q4MGD+ve//6309HSNHDnS3zMCAAD4zKd7dubPn6/JkydrzJgxqqqq+ulAoaFKT0/Xs88+69cBAQAA6sOn2AkLC9Mrr7yiZ599Vnv37pUkdezYUS1atPDrcAAAAPVVr18qWFJSopKSEnXu3FktWrSQZVn+mgsAAMAvfIqdH374QQMHDlSXLl2UmpqqkpISSVJ6ejpfOwcAAEHFp9iZNGmSmjZtqqKiIoWFhXnW33LLLcrLy/PbcAAAAPXl0z07H3zwgd5//321adPGa33nzp317bff+mUwoC7aTVkV6BEAAEHKpys7FRUVXld0Tjly5IgcDke9hwIAAPAXn67s9O/fX4sWLdL06dMl/fQ3sGprazVr1iwNGDDArwOi8XGVBABgEp9iZ9asWRo4cKA+/fRTnTx5Ug8++KB27NihI0eO6L///a+/ZwQAAPCZTx9jde/eXd9884369eun4cOHq6KiQiNHjtTWrVvVsWNHf88IAADgszpf2amqqtLgwYM1f/58PfLIIw0xEwAAgN/U+cpO06ZNtX379oaYBQAAwO98+hjrtttu04IFC/w9CwAAgN/5dINydXW1XnvtNa1du1a9e/c+7W9izZ492y/DAQAA1FedYmffvn1q166dvvzyS1199dWSpG+++cZrH5vN5r/pAAAA6qlOsdO5c2eVlJRo/fr1kn768xAvvfSSYmNjG2Q4AACA+qrTPTu//Kvm7733nioqKvw6EAAAgD/5dIPyKb+MHwAAgGBTp9ix2Wyn3ZPDPToAACCY1emeHcuyNH78eM8f+zxx4oTuvPPO076NtXz5cv9NCAAAUA91ip20tDSv5dtuu82vwwAAAPhbnWInJyenoeYAAABoEPW6QRkAACDYETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMFNHY2bdqkYcOGKT4+XjabTStWrPDablmWHn/8ccXFxal58+ZKTk7W7t27vfY5cuSIxo4dq4iICEVFRSk9PV3Hjh1rxHcBAACCWUBjp6KiQldddZXmzp17xu2zZs3SSy+9pPnz5+ujjz5SixYtlJKSohMnTnj2GTt2rHbs2KE1a9Zo5cqV2rRpkyZOnNhYbwEAAAS50EC++JAhQzRkyJAzbrMsS3PmzNGjjz6q4cOHS5IWLVqk2NhYrVixQqNHj9ZXX32lvLw8ffLJJ+rTp48k6eWXX1Zqaqqee+45xcfHN9p7AQAAwSlo79nZv3+/XC6XkpOTPesiIyOVmJiogoICSVJBQYGioqI8oSNJycnJCgkJ0UcffXTWY1dWVsrtdns9AACAmYI2dlwulyQpNjbWa31sbKxnm8vlUkxMjNf20NBQRUdHe/Y5k+zsbEVGRnoeCQkJfp4eAAAEi6CNnYY0depUlZWVeR7fffddoEcCAAANJGhjx+l0SpJKS0u91peWlnq2OZ1OHTp0yGt7dXW1jhw54tnnTBwOhyIiIrweAADATEEbO+3bt5fT6VR+fr5nndvt1kcffaSkpCRJUlJSko4eParCwkLPPuvWrVNtba0SExMbfWYAABB8AvptrGPHjmnPnj2e5f3792vbtm2Kjo7WZZddpvvuu09PP/20OnfurPbt2+uxxx5TfHy8RowYIUnq2rWrBg8erAkTJmj+/PmqqqpSZmamRo8ezTexAACApADHzqeffqoBAwZ4lrOysiRJaWlpys3N1YMPPqiKigpNnDhRR48eVb9+/ZSXl6dmzZp5nrN48WJlZmZq4MCBCgkJ0ahRo/TSSy81+nsBAADByWZZlhXoIQLN7XYrMjJSZWVlfr9/p92UVX49HgAAF5oDM4c2yHHP9+d30N6zAwAA4A/EDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAowV17DzxxBOy2WxejyuuuMKz/cSJE8rIyFCrVq10ySWXaNSoUSotLQ3gxAAAINgEdexI0pVXXqmSkhLPY/PmzZ5tkyZN0rvvvqtly5Zp48aNKi4u1siRIwM4LQAACDahgR7g14SGhsrpdJ62vqysTAsWLNCSJUt00003SZJycnLUtWtXbdmyRdddd11jjwoAAIJQ0F/Z2b17t+Lj49WhQweNHTtWRUVFkqTCwkJVVVUpOTnZs+8VV1yhyy67TAUFBec8ZmVlpdxut9cDAACYKahjJzExUbm5ucrLy9O8efO0f/9+9e/fX+Xl5XK5XLLb7YqKivJ6TmxsrFwu1zmPm52drcjISM8jISGhAd8FAAAIpKD+GGvIkCGef+7Zs6cSExPVtm1bvfnmm2revLnPx506daqysrI8y263m+ABAMBQQX1l55eioqLUpUsX7dmzR06nUydPntTRo0e99iktLT3jPT4/53A4FBER4fUAAABmuqBi59ixY9q7d6/i4uLUu3dvNW3aVPn5+Z7tu3btUlFRkZKSkgI4JQAACCZB/THW5MmTNWzYMLVt21bFxcWaNm2amjRpoltvvVWRkZFKT09XVlaWoqOjFRERoXvuuUdJSUl8EwsAAHgEdewcPHhQt956q3744Qddeuml6tevn7Zs2aJLL71UkvTCCy8oJCREo0aNUmVlpVJSUvTKK68EeGoAABBMbJZlWYEeItDcbrciIyNVVlbm9/t32k1Z5dfjAQBwoTkwc2iDHPd8f35fUPfsAAAA1BWxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxE7AADAaMQOAAAwGrEDAACMRuwAAACjETsAAMBoxA4AADAasQMAAIxG7AAAAKMROwAAwGjEDgAAMBqxAwAAjEbsAAAAoxkTO3PnzlW7du3UrFkzJSYm6uOPPw70SAAAIAgYETtvvPGGsrKyNG3aNH322We66qqrlJKSokOHDgV6NAAAEGBGxM7s2bM1YcIE3XHHHerWrZvmz5+vsLAwvfbaa4EeDQAABFhooAeor5MnT6qwsFBTp071rAsJCVFycrIKCgrO+JzKykpVVlZ6lsvKyiRJbrfb7/PVVh73+zEBALiQNMTP158f17Ksc+53wcfO999/r5qaGsXGxnqtj42N1ddff33G52RnZ+vJJ588bX1CQkKDzAgAwMUsck7DHr+8vFyRkZFn3X7Bx44vpk6dqqysLM9ybW2tjhw5olatWslmswVwsuDkdruVkJCg7777ThEREYEeB+KcBBvOR3DhfASXhjwflmWpvLxc8fHx59zvgo+d1q1bq0mTJiotLfVaX1paKqfTecbnOBwOORwOr3VRUVENNaIxIiIi+B+OIMM5CS6cj+DC+QguDXU+znVF55QL/gZlu92u3r17Kz8/37OutrZW+fn5SkpKCuBkAAAgGFzwV3YkKSsrS2lpaerTp4+uvfZazZkzRxUVFbrjjjsCPRoAAAgwI2Lnlltu0eHDh/X444/L5XKpV69eysvLO+2mZfjG4XBo2rRpp330h8DhnAQXzkdw4XwEl2A4Hzbr176vBQAAcAG74O/ZAQAAOBdiBwAAGI3YAQAARiN2AACA0YgdSJLmzp2rdu3aqVmzZkpMTNTHH3981n1fffVV9e/fXy1btlTLli2VnJx8zv1Rd3U5Hz+3dOlS2Ww2jRgxomEHvAjV9ZwcPXpUGRkZiouLk8PhUJcuXbR69epGmtZ8dT0fc+bM0eWXX67mzZsrISFBkyZN0okTJxppWrNt2rRJw4YNU3x8vGw2m1asWPGrz9mwYYOuvvpqORwOderUSbm5uQ07pIWL3tKlSy273W699tpr1o4dO6wJEyZYUVFRVmlp6Rn3HzNmjDV37lxr69at1ldffWWNHz/eioyMtA4ePNjIk5uprufjlP3791u/+c1vrP79+1vDhw9vnGEvEnU9J5WVlVafPn2s1NRUa/Pmzdb+/futDRs2WNu2bWvkyc1U1/OxePFiy+FwWIsXL7b2799vvf/++1ZcXJw1adKkRp7cTKtXr7YeeeQRa/ny5ZYk66233jrn/vv27bPCwsKsrKwsa+fOndbLL79sNWnSxMrLy2uwGYkdWNdee62VkZHhWa6pqbHi4+Ot7Ozs83p+dXW1FR4ebi1cuLChRryo+HI+qqurreuvv976xz/+YaWlpRE7flbXczJv3jyrQ4cO1smTJxtrxItKXc9HRkaGddNNN3mty8rKsvr27dugc16Mzid2HnzwQevKK6/0WnfLLbdYKSkpDTYXH2Nd5E6ePKnCwkIlJyd71oWEhCg5OVkFBQXndYzjx4+rqqpK0dHRDTXmRcPX8/HUU08pJiZG6enpjTHmRcWXc/LOO+8oKSlJGRkZio2NVffu3TVjxgzV1NQ01tjG8uV8XH/99SosLPR81LVv3z6tXr1aqampjTIzvBUUFHidP0lKSUk57585vjDiNyjDd99//71qampO+23TsbGx+vrrr8/rGA899JDi4+NP+y8v6s6X87F582YtWLBA27Zta4QJLz6+nJN9+/Zp3bp1Gjt2rFavXq09e/bo7rvvVlVVlaZNm9YYYxvLl/MxZswYff/99+rXr58sy1J1dbXuvPNOPfzww40xMn7B5XKd8fy53W793//9n5o3b+731+TKDupl5syZWrp0qd566y01a9Ys0ONcdMrLyzVu3Di9+uqrat26daDHwf9XW1urmJgY/f3vf1fv3r11yy236JFHHtH8+fMDPdpFacOGDZoxY4ZeeeUVffbZZ1q+fLlWrVql6dOnB3o0NBKu7FzkWrdurSZNmqi0tNRrfWlpqZxO5zmf+9xzz2nmzJlau3atevbs2ZBjXjTqej727t2rAwcOaNiwYZ51tbW1kqTQ0FDt2rVLHTt2bNihDefLvyNxcXFq2rSpmjRp4lnXtWtXuVwunTx5Una7vUFnNpkv5+Oxxx7TuHHj9Mc//lGS1KNHD1VUVGjixIl65JFHFBLC/+9vTE6n84znLyIiokGu6khc2bno2e129e7dW/n5+Z51tbW1ys/PV1JS0lmfN2vWLE2fPl15eXnq06dPY4x6Uajr+bjiiiv0xRdfaNu2bZ7H7373Ow0YMEDbtm1TQkJCY45vJF/+Henbt6/27NnjCU9J+uabbxQXF0fo1JMv5+P48eOnBc2pELX485CNLikpyev8SdKaNWvO+TOn3hrs1mdcMJYuXWo5HA4rNzfX2rlzpzVx4kQrKirKcrlclmVZ1rhx46wpU6Z49p85c6Zlt9utf/3rX1ZJSYnnUV5eHqi3YJS6no9f4ttY/lfXc1JUVGSFh4dbmZmZ1q5du6yVK1daMTEx1tNPPx2ot2CUup6PadOmWeHh4dbrr79u7du3z/rggw+sjh07Wr///e8D9RaMUl5ebm3dutXaunWrJcmaPXu2tXXrVuvbb7+1LMuypkyZYo0bN86z/6mvnj/wwAPWV199Zc2dO5evnqNxvPzyy9Zll11m2e1269prr7W2bNni2fbb3/7WSktL8yy3bdvWknTaY9q0aY0/uKHqcj5+idhpGHU9Jx9++KGVmJhoORwOq0OHDtZf/vIXq7q6upGnNlddzkdVVZX1xBNPWB07drSaNWtmJSQkWHfffbf1448/Nv7gBlq/fv0ZfyacOgdpaWnWb3/729Oe06tXL8tut1sdOnSwcnJyGnRGm2VxDQ8AAJiLe3YAAIDRiB0AAGA0YgcAABiN2AEAAEYjdgAAgNGIHQAAYDRiBwAAGI3YAQAARiN2AACA0YgdAABgNGIHAAAYjdgBAABG+39CA9s9W3ZlvQAAAABJRU5ErkJggg==",
|
716 |
-
"text/plain": [
|
717 |
-
"<Figure size 640x480 with 1 Axes>"
|
718 |
-
]
|
719 |
-
},
|
720 |
-
"metadata": {},
|
721 |
-
"output_type": "display_data"
|
722 |
-
}
|
723 |
-
],
|
724 |
-
"source": [
|
725 |
-
"\n"
|
726 |
]
|
727 |
},
|
728 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
25 |
},
|
26 |
{
|
27 |
"cell_type": "code",
|
28 |
+
"execution_count": 4,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"ename": "",
|
33 |
+
"evalue": "",
|
34 |
+
"output_type": "error",
|
35 |
+
"traceback": [
|
36 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
37 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
38 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
39 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
40 |
+
]
|
41 |
+
}
|
42 |
+
],
|
43 |
"source": [
|
44 |
+
"tools_df = pd.read_parquet(\"./data/tools.parquet\")\n",
|
45 |
+
"trades_df = pd.read_parquet(\"./data/all_trades_profitability.parquet\")\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
"\n",
|
47 |
+
"tools_df['request_time'] = pd.to_datetime(tools_df['request_time'])\n",
|
48 |
+
"tools_df = tools_df[tools_df['request_time'].dt.year == 2024]\n",
|
|
|
|
|
49 |
"\n",
|
50 |
+
"trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])\n",
|
51 |
+
"trades_df = trades_df[trades_df['creation_timestamp'].dt.year == 2024]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
]
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
+
"execution_count": 5,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"metadata": {},
|
58 |
"outputs": [
|
59 |
{
|
|
|
68 |
" dtype='object')"
|
69 |
]
|
70 |
},
|
71 |
+
"execution_count": 5,
|
72 |
"metadata": {},
|
73 |
"output_type": "execute_result"
|
74 |
}
|
75 |
],
|
76 |
"source": [
|
77 |
+
"trades_df.columns\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
]
|
79 |
},
|
80 |
{
|