cyberosa commited on
Commit
98ae81f
Β·
1 Parent(s): 483d2ab

updating notebooks

Browse files
.DS_Store DELETED
Binary file (6.15 kB)
 
.gitignore CHANGED
@@ -3,6 +3,8 @@ __pycache__/
3
  *.py[cod]
4
  *$py.class
5
 
 
 
6
  # C extensions
7
  *.so
8
 
@@ -157,4 +159,4 @@ cython_debug/
157
  # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
  # and can be added to the global gitignore or merged into this file. For a more nuclear
159
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
- #.idea/
 
3
  *.py[cod]
4
  *$py.class
5
 
6
+ .DS_Store
7
+
8
  # C extensions
9
  *.so
10
 
 
159
  # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
  # and can be added to the global gitignore or merged into this file. For a more nuclear
161
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
analysis.ipynb β†’ notebooks/analysis.ipynb RENAMED
File without changes
increase_zero_mech_calls.ipynb β†’ notebooks/increase_zero_mech_calls.ipynb RENAMED
File without changes
{nbs β†’ notebooks}/test.ipynb RENAMED
File without changes
{nbs β†’ notebooks}/weekly_analysis.ipynb RENAMED
@@ -52,7 +52,7 @@
52
  },
53
  {
54
  "cell_type": "code",
55
- "execution_count": 6,
56
  "metadata": {},
57
  "outputs": [
58
  {
@@ -60,31 +60,31 @@
60
  "output_type": "stream",
61
  "text": [
62
  "<class 'pandas.core.frame.DataFrame'>\n",
63
- "RangeIndex: 92662 entries, 0 to 92661\n",
64
  "Data columns (total 19 columns):\n",
65
  " # Column Non-Null Count Dtype \n",
66
  "--- ------ -------------- ----- \n",
67
- " 0 trader_address 92662 non-null object \n",
68
- " 1 trade_id 92662 non-null object \n",
69
- " 2 creation_timestamp 92662 non-null datetime64[ns, UTC]\n",
70
- " 3 title 92662 non-null object \n",
71
- " 4 market_status 92662 non-null object \n",
72
- " 5 collateral_amount 92662 non-null float64 \n",
73
- " 6 outcome_index 92662 non-null object \n",
74
- " 7 trade_fee_amount 92662 non-null float64 \n",
75
- " 8 outcomes_tokens_traded 92662 non-null float64 \n",
76
- " 9 current_answer 92662 non-null int64 \n",
77
- " 10 is_invalid 92662 non-null bool \n",
78
- " 11 winning_trade 92662 non-null bool \n",
79
- " 12 earnings 92662 non-null float64 \n",
80
- " 13 redeemed 92662 non-null bool \n",
81
- " 14 redeemed_amount 92662 non-null float64 \n",
82
- " 15 num_mech_calls 92662 non-null int64 \n",
83
- " 16 mech_fee_amount 92662 non-null float64 \n",
84
- " 17 net_earnings 92662 non-null float64 \n",
85
- " 18 roi 92662 non-null float64 \n",
86
  "dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(5)\n",
87
- "memory usage: 11.6+ MB\n"
88
  ]
89
  }
90
  ],
@@ -94,7 +94,7 @@
94
  },
95
  {
96
  "cell_type": "code",
97
- "execution_count": 7,
98
  "metadata": {},
99
  "outputs": [
100
  {
@@ -103,7 +103,7 @@
103
  "Timestamp('2023-07-12 15:17:25+0000', tz='UTC')"
104
  ]
105
  },
106
- "execution_count": 7,
107
  "metadata": {},
108
  "output_type": "execute_result"
109
  }
@@ -112,6 +112,26 @@
112
  "all_trades.creation_timestamp.min()"
113
  ]
114
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  {
116
  "cell_type": "code",
117
  "execution_count": 4,
@@ -2363,7 +2383,7 @@
2363
  "claude_prediction_online = claude_prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
2364
  "claude_prediction_online = claude_prediction_online.sort_values(by='request_month_year_week')\n",
2365
  "\n",
2366
- "claude_prediction_online"
2367
  ]
2368
  },
2369
  {
@@ -2494,7 +2514,7 @@
2494
  "claude_prediction_offline = claude_prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
2495
  "claude_prediction_offline = claude_prediction_offline.sort_values(by='request_month_year_week')\n",
2496
  "\n",
2497
- "claude_prediction_offline"
2498
  ]
2499
  },
2500
  {
@@ -2737,7 +2757,7 @@
2737
  "prediction_online = prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
2738
  "prediction_online = prediction_online.sort_values(by='request_month_year_week')\n",
2739
  "\n",
2740
- "prediction_online"
2741
  ]
2742
  },
2743
  {
@@ -3368,7 +3388,7 @@
3368
  "prediction_online_sme = prediction_online_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
3369
  "prediction_online_sme = prediction_online_sme.sort_values(by='request_month_year_week')\n",
3370
  "\n",
3371
- "prediction_online_sme"
3372
  ]
3373
  },
3374
  {
@@ -3471,7 +3491,7 @@
3471
  "prediction_request_rag = prediction_request_rag[['request_month_year_week', 'win_perc', 'total_request']]\n",
3472
  "prediction_request_rag = prediction_request_rag.sort_values(by='request_month_year_week')\n",
3473
  "\n",
3474
- "prediction_request_rag"
3475
  ]
3476
  },
3477
  {
@@ -3739,7 +3759,7 @@
3739
  "prediction_url_cot_claude = prediction_url_cot_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
3740
  "prediction_url_cot_claude = prediction_url_cot_claude.sort_values(by='request_month_year_week')\n",
3741
  "\n",
3742
- "prediction_url_cot_claude"
3743
  ]
3744
  },
3745
  {
 
52
  },
53
  {
54
  "cell_type": "code",
55
+ "execution_count": 4,
56
  "metadata": {},
57
  "outputs": [
58
  {
 
60
  "output_type": "stream",
61
  "text": [
62
  "<class 'pandas.core.frame.DataFrame'>\n",
63
+ "RangeIndex: 95550 entries, 0 to 95549\n",
64
  "Data columns (total 19 columns):\n",
65
  " # Column Non-Null Count Dtype \n",
66
  "--- ------ -------------- ----- \n",
67
+ " 0 trader_address 95550 non-null object \n",
68
+ " 1 trade_id 95550 non-null object \n",
69
+ " 2 creation_timestamp 95550 non-null datetime64[ns, UTC]\n",
70
+ " 3 title 95550 non-null object \n",
71
+ " 4 market_status 95550 non-null object \n",
72
+ " 5 collateral_amount 95550 non-null float64 \n",
73
+ " 6 outcome_index 95550 non-null object \n",
74
+ " 7 trade_fee_amount 95550 non-null float64 \n",
75
+ " 8 outcomes_tokens_traded 95550 non-null float64 \n",
76
+ " 9 current_answer 95550 non-null int64 \n",
77
+ " 10 is_invalid 95550 non-null bool \n",
78
+ " 11 winning_trade 95550 non-null bool \n",
79
+ " 12 earnings 95550 non-null float64 \n",
80
+ " 13 redeemed 95550 non-null bool \n",
81
+ " 14 redeemed_amount 95550 non-null float64 \n",
82
+ " 15 num_mech_calls 95550 non-null int64 \n",
83
+ " 16 mech_fee_amount 95550 non-null float64 \n",
84
+ " 17 net_earnings 95550 non-null float64 \n",
85
+ " 18 roi 95550 non-null float64 \n",
86
  "dtypes: bool(3), datetime64[ns, UTC](1), float64(8), int64(2), object(5)\n",
87
+ "memory usage: 11.9+ MB\n"
88
  ]
89
  }
90
  ],
 
94
  },
95
  {
96
  "cell_type": "code",
97
+ "execution_count": 5,
98
  "metadata": {},
99
  "outputs": [
100
  {
 
103
  "Timestamp('2023-07-12 15:17:25+0000', tz='UTC')"
104
  ]
105
  },
106
+ "execution_count": 5,
107
  "metadata": {},
108
  "output_type": "execute_result"
109
  }
 
112
  "all_trades.creation_timestamp.min()"
113
  ]
114
  },
115
+ {
116
+ "cell_type": "code",
117
+ "execution_count": 6,
118
+ "metadata": {},
119
+ "outputs": [
120
+ {
121
+ "data": {
122
+ "text/plain": [
123
+ "Timestamp('2024-05-27 02:13:05+0000', tz='UTC')"
124
+ ]
125
+ },
126
+ "execution_count": 6,
127
+ "metadata": {},
128
+ "output_type": "execute_result"
129
+ }
130
+ ],
131
+ "source": [
132
+ "all_trades.creation_timestamp.max()"
133
+ ]
134
+ },
135
  {
136
  "cell_type": "code",
137
  "execution_count": 4,
 
2383
  "claude_prediction_online = claude_prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
2384
  "claude_prediction_online = claude_prediction_online.sort_values(by='request_month_year_week')\n",
2385
  "\n",
2386
+ "claude_prediction_online.head()"
2387
  ]
2388
  },
2389
  {
 
2514
  "claude_prediction_offline = claude_prediction_offline[['request_month_year_week', 'win_perc', 'total_request']]\n",
2515
  "claude_prediction_offline = claude_prediction_offline.sort_values(by='request_month_year_week')\n",
2516
  "\n",
2517
+ "claude_prediction_offline.head()"
2518
  ]
2519
  },
2520
  {
 
2757
  "prediction_online = prediction_online[['request_month_year_week', 'win_perc', 'total_request']]\n",
2758
  "prediction_online = prediction_online.sort_values(by='request_month_year_week')\n",
2759
  "\n",
2760
+ "prediction_online.head()"
2761
  ]
2762
  },
2763
  {
 
3388
  "prediction_online_sme = prediction_online_sme[['request_month_year_week', 'win_perc', 'total_request']]\n",
3389
  "prediction_online_sme = prediction_online_sme.sort_values(by='request_month_year_week')\n",
3390
  "\n",
3391
+ "prediction_online_sme.head()"
3392
  ]
3393
  },
3394
  {
 
3491
  "prediction_request_rag = prediction_request_rag[['request_month_year_week', 'win_perc', 'total_request']]\n",
3492
  "prediction_request_rag = prediction_request_rag.sort_values(by='request_month_year_week')\n",
3493
  "\n",
3494
+ "prediction_request_rag.head()"
3495
  ]
3496
  },
3497
  {
 
3759
  "prediction_url_cot_claude = prediction_url_cot_claude[['request_month_year_week', 'win_perc', 'total_request']]\n",
3760
  "prediction_url_cot_claude = prediction_url_cot_claude.sort_values(by='request_month_year_week')\n",
3761
  "\n",
3762
+ "prediction_url_cot_claude.head()"
3763
  ]
3764
  },
3765
  {