cyberosa
commited on
Commit
·
b3b3ee6
1
Parent(s):
3cfd212
adding tools accuracy info
Browse files- notebooks/analysis.ipynb +458 -4
- scripts/profitability.py +2 -4
- scripts/pull_data.py +13 -0
- scripts/tools.py +36 -14
notebooks/analysis.ipynb
CHANGED
@@ -16,9 +16,463 @@
|
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
19 |
-
"fpmms = pd.read_parquet('
|
20 |
-
"tools = pd.read_parquet('
|
21 |
-
"trades = pd.read_parquet('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
]
|
23 |
},
|
24 |
{
|
@@ -2048,7 +2502,7 @@
|
|
2048 |
"name": "python",
|
2049 |
"nbconvert_exporter": "python",
|
2050 |
"pygments_lexer": "ipython3",
|
2051 |
-
"version": "3.
|
2052 |
}
|
2053 |
},
|
2054 |
"nbformat": 4,
|
|
|
16 |
"metadata": {},
|
17 |
"outputs": [],
|
18 |
"source": [
|
19 |
+
"fpmms = pd.read_parquet('../data/fpmms.parquet')\n",
|
20 |
+
"tools = pd.read_parquet('../data/tools.parquet')\n",
|
21 |
+
"trades = pd.read_parquet('../data/all_trades_profitability.parquet')"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": 3,
|
27 |
+
"metadata": {},
|
28 |
+
"outputs": [],
|
29 |
+
"source": [
|
30 |
+
"INC_TOOLS = [\n",
|
31 |
+
" \"prediction-online\",\n",
|
32 |
+
" \"prediction-offline\",\n",
|
33 |
+
" \"claude-prediction-online\",\n",
|
34 |
+
" \"claude-prediction-offline\",\n",
|
35 |
+
" \"prediction-offline-sme\",\n",
|
36 |
+
" \"prediction-online-sme\",\n",
|
37 |
+
" \"prediction-request-rag\",\n",
|
38 |
+
" \"prediction-request-reasoning\",\n",
|
39 |
+
" \"prediction-url-cot-claude\",\n",
|
40 |
+
" \"prediction-request-rag-claude\",\n",
|
41 |
+
" \"prediction-request-reasoning-claude\",\n",
|
42 |
+
"]"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": 4,
|
48 |
+
"metadata": {},
|
49 |
+
"outputs": [
|
50 |
+
{
|
51 |
+
"data": {
|
52 |
+
"text/html": [
|
53 |
+
"<div>\n",
|
54 |
+
"<style scoped>\n",
|
55 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
56 |
+
" vertical-align: middle;\n",
|
57 |
+
" }\n",
|
58 |
+
"\n",
|
59 |
+
" .dataframe tbody tr th {\n",
|
60 |
+
" vertical-align: top;\n",
|
61 |
+
" }\n",
|
62 |
+
"\n",
|
63 |
+
" .dataframe thead th {\n",
|
64 |
+
" text-align: right;\n",
|
65 |
+
" }\n",
|
66 |
+
"</style>\n",
|
67 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
68 |
+
" <thead>\n",
|
69 |
+
" <tr style=\"text-align: right;\">\n",
|
70 |
+
" <th>win</th>\n",
|
71 |
+
" <th>tool</th>\n",
|
72 |
+
" <th>tool_accuracy</th>\n",
|
73 |
+
" <th>total_requests</th>\n",
|
74 |
+
" </tr>\n",
|
75 |
+
" </thead>\n",
|
76 |
+
" <tbody>\n",
|
77 |
+
" <tr>\n",
|
78 |
+
" <th>0</th>\n",
|
79 |
+
" <td>claude-prediction-offline</td>\n",
|
80 |
+
" <td>66.308244</td>\n",
|
81 |
+
" <td>279</td>\n",
|
82 |
+
" </tr>\n",
|
83 |
+
" <tr>\n",
|
84 |
+
" <th>1</th>\n",
|
85 |
+
" <td>claude-prediction-online</td>\n",
|
86 |
+
" <td>58.914027</td>\n",
|
87 |
+
" <td>1105</td>\n",
|
88 |
+
" </tr>\n",
|
89 |
+
" <tr>\n",
|
90 |
+
" <th>2</th>\n",
|
91 |
+
" <td>prediction-offline</td>\n",
|
92 |
+
" <td>67.717915</td>\n",
|
93 |
+
" <td>2283</td>\n",
|
94 |
+
" </tr>\n",
|
95 |
+
" <tr>\n",
|
96 |
+
" <th>3</th>\n",
|
97 |
+
" <td>prediction-offline-sme</td>\n",
|
98 |
+
" <td>55.555556</td>\n",
|
99 |
+
" <td>18</td>\n",
|
100 |
+
" </tr>\n",
|
101 |
+
" <tr>\n",
|
102 |
+
" <th>4</th>\n",
|
103 |
+
" <td>prediction-online</td>\n",
|
104 |
+
" <td>65.459066</td>\n",
|
105 |
+
" <td>5631</td>\n",
|
106 |
+
" </tr>\n",
|
107 |
+
" <tr>\n",
|
108 |
+
" <th>5</th>\n",
|
109 |
+
" <td>prediction-online-sme</td>\n",
|
110 |
+
" <td>67.417656</td>\n",
|
111 |
+
" <td>8167</td>\n",
|
112 |
+
" </tr>\n",
|
113 |
+
" <tr>\n",
|
114 |
+
" <th>6</th>\n",
|
115 |
+
" <td>prediction-request-rag</td>\n",
|
116 |
+
" <td>64.217072</td>\n",
|
117 |
+
" <td>1769</td>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" <tr>\n",
|
120 |
+
" <th>7</th>\n",
|
121 |
+
" <td>prediction-request-rag-claude</td>\n",
|
122 |
+
" <td>69.554566</td>\n",
|
123 |
+
" <td>4490</td>\n",
|
124 |
+
" </tr>\n",
|
125 |
+
" <tr>\n",
|
126 |
+
" <th>8</th>\n",
|
127 |
+
" <td>prediction-request-reasoning</td>\n",
|
128 |
+
" <td>68.813594</td>\n",
|
129 |
+
" <td>9828</td>\n",
|
130 |
+
" </tr>\n",
|
131 |
+
" <tr>\n",
|
132 |
+
" <th>9</th>\n",
|
133 |
+
" <td>prediction-request-reasoning-claude</td>\n",
|
134 |
+
" <td>68.910256</td>\n",
|
135 |
+
" <td>2184</td>\n",
|
136 |
+
" </tr>\n",
|
137 |
+
" <tr>\n",
|
138 |
+
" <th>10</th>\n",
|
139 |
+
" <td>prediction-url-cot-claude</td>\n",
|
140 |
+
" <td>64.584980</td>\n",
|
141 |
+
" <td>1265</td>\n",
|
142 |
+
" </tr>\n",
|
143 |
+
" </tbody>\n",
|
144 |
+
"</table>\n",
|
145 |
+
"</div>"
|
146 |
+
],
|
147 |
+
"text/plain": [
|
148 |
+
"win tool tool_accuracy total_requests\n",
|
149 |
+
"0 claude-prediction-offline 66.308244 279\n",
|
150 |
+
"1 claude-prediction-online 58.914027 1105\n",
|
151 |
+
"2 prediction-offline 67.717915 2283\n",
|
152 |
+
"3 prediction-offline-sme 55.555556 18\n",
|
153 |
+
"4 prediction-online 65.459066 5631\n",
|
154 |
+
"5 prediction-online-sme 67.417656 8167\n",
|
155 |
+
"6 prediction-request-rag 64.217072 1769\n",
|
156 |
+
"7 prediction-request-rag-claude 69.554566 4490\n",
|
157 |
+
"8 prediction-request-reasoning 68.813594 9828\n",
|
158 |
+
"9 prediction-request-reasoning-claude 68.910256 2184\n",
|
159 |
+
"10 prediction-url-cot-claude 64.584980 1265"
|
160 |
+
]
|
161 |
+
},
|
162 |
+
"execution_count": 4,
|
163 |
+
"metadata": {},
|
164 |
+
"output_type": "execute_result"
|
165 |
+
}
|
166 |
+
],
|
167 |
+
"source": [
|
168 |
+
"tools_inc = tools[tools['tool'].isin(INC_TOOLS)]\n",
|
169 |
+
"# filtering errors\n",
|
170 |
+
"tools_non_error = tools_inc[tools_inc['error'] != 1]\n",
|
171 |
+
"tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})\n",
|
172 |
+
"tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]\n",
|
173 |
+
"tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]\n",
|
174 |
+
"tools_non_error['win'] = (tools_non_error['currentAnswer'] == tools_non_error['vote']).astype(int)\n",
|
175 |
+
"tools_non_error.columns = tools_non_error.columns.astype(str)\n",
|
176 |
+
"wins = tools_non_error.groupby(['tool', 'win']).size().unstack().fillna(0)\n",
|
177 |
+
"wins['tool_accuracy'] = (wins[1] / (wins[0] + wins[1])) * 100\n",
|
178 |
+
"wins.reset_index(inplace=True)\n",
|
179 |
+
"wins['total_requests'] = wins[0] + wins[1]\n",
|
180 |
+
"wins.columns = wins.columns.astype(str)\n",
|
181 |
+
"wins = wins[[\"tool\", \"tool_accuracy\", \"total_requests\"]]\n",
|
182 |
+
"wins"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 8,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/html": [
|
193 |
+
"<div>\n",
|
194 |
+
"<style scoped>\n",
|
195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
+
" vertical-align: middle;\n",
|
197 |
+
" }\n",
|
198 |
+
"\n",
|
199 |
+
" .dataframe tbody tr th {\n",
|
200 |
+
" vertical-align: top;\n",
|
201 |
+
" }\n",
|
202 |
+
"\n",
|
203 |
+
" .dataframe thead th {\n",
|
204 |
+
" text-align: right;\n",
|
205 |
+
" }\n",
|
206 |
+
"</style>\n",
|
207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
+
" <thead>\n",
|
209 |
+
" <tr style=\"text-align: right;\">\n",
|
210 |
+
" <th></th>\n",
|
211 |
+
" <th>min</th>\n",
|
212 |
+
" <th>max</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" <tr>\n",
|
215 |
+
" <th>tool</th>\n",
|
216 |
+
" <th></th>\n",
|
217 |
+
" <th></th>\n",
|
218 |
+
" </tr>\n",
|
219 |
+
" </thead>\n",
|
220 |
+
" <tbody>\n",
|
221 |
+
" <tr>\n",
|
222 |
+
" <th>claude-prediction-offline</th>\n",
|
223 |
+
" <td>2024-04-23 13:09:30</td>\n",
|
224 |
+
" <td>2024-06-10 00:31:30</td>\n",
|
225 |
+
" </tr>\n",
|
226 |
+
" <tr>\n",
|
227 |
+
" <th>claude-prediction-online</th>\n",
|
228 |
+
" <td>2024-04-12 12:24:20</td>\n",
|
229 |
+
" <td>2024-06-09 21:41:20</td>\n",
|
230 |
+
" </tr>\n",
|
231 |
+
" <tr>\n",
|
232 |
+
" <th>prediction-offline</th>\n",
|
233 |
+
" <td>2024-04-12 12:20:10</td>\n",
|
234 |
+
" <td>2024-06-08 23:45:00</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>prediction-offline-sme</th>\n",
|
238 |
+
" <td>2024-04-16 07:58:45</td>\n",
|
239 |
+
" <td>2024-04-29 20:45:15</td>\n",
|
240 |
+
" </tr>\n",
|
241 |
+
" <tr>\n",
|
242 |
+
" <th>prediction-online</th>\n",
|
243 |
+
" <td>2024-04-16 05:52:40</td>\n",
|
244 |
+
" <td>2024-06-09 21:47:20</td>\n",
|
245 |
+
" </tr>\n",
|
246 |
+
" <tr>\n",
|
247 |
+
" <th>prediction-online-sme</th>\n",
|
248 |
+
" <td>2024-04-12 11:51:30</td>\n",
|
249 |
+
" <td>2024-06-10 00:06:00</td>\n",
|
250 |
+
" </tr>\n",
|
251 |
+
" <tr>\n",
|
252 |
+
" <th>prediction-request-rag</th>\n",
|
253 |
+
" <td>2024-04-12 11:39:40</td>\n",
|
254 |
+
" <td>2024-06-09 21:17:45</td>\n",
|
255 |
+
" </tr>\n",
|
256 |
+
" <tr>\n",
|
257 |
+
" <th>prediction-request-rag-claude</th>\n",
|
258 |
+
" <td>2024-04-12 11:14:30</td>\n",
|
259 |
+
" <td>2024-06-07 11:42:30</td>\n",
|
260 |
+
" </tr>\n",
|
261 |
+
" <tr>\n",
|
262 |
+
" <th>prediction-request-reasoning</th>\n",
|
263 |
+
" <td>2024-04-12 11:57:05</td>\n",
|
264 |
+
" <td>2024-06-09 21:50:45</td>\n",
|
265 |
+
" </tr>\n",
|
266 |
+
" <tr>\n",
|
267 |
+
" <th>prediction-request-reasoning-claude</th>\n",
|
268 |
+
" <td>2024-04-12 11:53:55</td>\n",
|
269 |
+
" <td>2024-06-05 05:00:10</td>\n",
|
270 |
+
" </tr>\n",
|
271 |
+
" <tr>\n",
|
272 |
+
" <th>prediction-url-cot-claude</th>\n",
|
273 |
+
" <td>2024-04-12 11:37:15</td>\n",
|
274 |
+
" <td>2024-06-05 05:21:10</td>\n",
|
275 |
+
" </tr>\n",
|
276 |
+
" </tbody>\n",
|
277 |
+
"</table>\n",
|
278 |
+
"</div>"
|
279 |
+
],
|
280 |
+
"text/plain": [
|
281 |
+
" min max\n",
|
282 |
+
"tool \n",
|
283 |
+
"claude-prediction-offline 2024-04-23 13:09:30 2024-06-10 00:31:30\n",
|
284 |
+
"claude-prediction-online 2024-04-12 12:24:20 2024-06-09 21:41:20\n",
|
285 |
+
"prediction-offline 2024-04-12 12:20:10 2024-06-08 23:45:00\n",
|
286 |
+
"prediction-offline-sme 2024-04-16 07:58:45 2024-04-29 20:45:15\n",
|
287 |
+
"prediction-online 2024-04-16 05:52:40 2024-06-09 21:47:20\n",
|
288 |
+
"prediction-online-sme 2024-04-12 11:51:30 2024-06-10 00:06:00\n",
|
289 |
+
"prediction-request-rag 2024-04-12 11:39:40 2024-06-09 21:17:45\n",
|
290 |
+
"prediction-request-rag-claude 2024-04-12 11:14:30 2024-06-07 11:42:30\n",
|
291 |
+
"prediction-request-reasoning 2024-04-12 11:57:05 2024-06-09 21:50:45\n",
|
292 |
+
"prediction-request-reasoning-claude 2024-04-12 11:53:55 2024-06-05 05:00:10\n",
|
293 |
+
"prediction-url-cot-claude 2024-04-12 11:37:15 2024-06-05 05:21:10"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
"execution_count": 8,
|
297 |
+
"metadata": {},
|
298 |
+
"output_type": "execute_result"
|
299 |
+
}
|
300 |
+
],
|
301 |
+
"source": [
|
302 |
+
"tools_inc = tools[tools['tool'].isin(INC_TOOLS)]\n",
|
303 |
+
"# filtering errors\n",
|
304 |
+
"tools_non_error = tools_inc[tools_inc['error'] != 1]\n",
|
305 |
+
"tools_non_error.loc[:, 'currentAnswer'] = tools_non_error['currentAnswer'].replace({'no': 'No', 'yes': 'Yes'})\n",
|
306 |
+
"tools_non_error = tools_non_error[tools_non_error['currentAnswer'].isin(['Yes', 'No'])]\n",
|
307 |
+
"tools_non_error = tools_non_error[tools_non_error['vote'].isin(['Yes', 'No'])]\n",
|
308 |
+
"tools_non_error['win'] = (tools_non_error['currentAnswer'] == tools_non_error['vote']).astype(int)\n",
|
309 |
+
"tools_non_error.columns = tools_non_error.columns.astype(str)\n",
|
310 |
+
"timeline = tools_non_error.groupby(['tool'])[\"request_time\"].agg([\"min\",\"max\"])\n",
|
311 |
+
"timeline"
|
312 |
+
]
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"execution_count": 10,
|
317 |
+
"metadata": {},
|
318 |
+
"outputs": [
|
319 |
+
{
|
320 |
+
"data": {
|
321 |
+
"text/html": [
|
322 |
+
"<div>\n",
|
323 |
+
"<style scoped>\n",
|
324 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
325 |
+
" vertical-align: middle;\n",
|
326 |
+
" }\n",
|
327 |
+
"\n",
|
328 |
+
" .dataframe tbody tr th {\n",
|
329 |
+
" vertical-align: top;\n",
|
330 |
+
" }\n",
|
331 |
+
"\n",
|
332 |
+
" .dataframe thead th {\n",
|
333 |
+
" text-align: right;\n",
|
334 |
+
" }\n",
|
335 |
+
"</style>\n",
|
336 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
337 |
+
" <thead>\n",
|
338 |
+
" <tr style=\"text-align: right;\">\n",
|
339 |
+
" <th></th>\n",
|
340 |
+
" <th>tool</th>\n",
|
341 |
+
" <th>tool_accuracy</th>\n",
|
342 |
+
" <th>total_requests</th>\n",
|
343 |
+
" <th>min</th>\n",
|
344 |
+
" <th>max</th>\n",
|
345 |
+
" </tr>\n",
|
346 |
+
" </thead>\n",
|
347 |
+
" <tbody>\n",
|
348 |
+
" <tr>\n",
|
349 |
+
" <th>0</th>\n",
|
350 |
+
" <td>claude-prediction-offline</td>\n",
|
351 |
+
" <td>66.308244</td>\n",
|
352 |
+
" <td>279</td>\n",
|
353 |
+
" <td>2024-04-23 13:09:30</td>\n",
|
354 |
+
" <td>2024-06-10 00:31:30</td>\n",
|
355 |
+
" </tr>\n",
|
356 |
+
" <tr>\n",
|
357 |
+
" <th>1</th>\n",
|
358 |
+
" <td>claude-prediction-online</td>\n",
|
359 |
+
" <td>58.914027</td>\n",
|
360 |
+
" <td>1105</td>\n",
|
361 |
+
" <td>2024-04-12 12:24:20</td>\n",
|
362 |
+
" <td>2024-06-09 21:41:20</td>\n",
|
363 |
+
" </tr>\n",
|
364 |
+
" <tr>\n",
|
365 |
+
" <th>2</th>\n",
|
366 |
+
" <td>prediction-offline</td>\n",
|
367 |
+
" <td>67.717915</td>\n",
|
368 |
+
" <td>2283</td>\n",
|
369 |
+
" <td>2024-04-12 12:20:10</td>\n",
|
370 |
+
" <td>2024-06-08 23:45:00</td>\n",
|
371 |
+
" </tr>\n",
|
372 |
+
" <tr>\n",
|
373 |
+
" <th>3</th>\n",
|
374 |
+
" <td>prediction-offline-sme</td>\n",
|
375 |
+
" <td>55.555556</td>\n",
|
376 |
+
" <td>18</td>\n",
|
377 |
+
" <td>2024-04-16 07:58:45</td>\n",
|
378 |
+
" <td>2024-04-29 20:45:15</td>\n",
|
379 |
+
" </tr>\n",
|
380 |
+
" <tr>\n",
|
381 |
+
" <th>4</th>\n",
|
382 |
+
" <td>prediction-online</td>\n",
|
383 |
+
" <td>65.459066</td>\n",
|
384 |
+
" <td>5631</td>\n",
|
385 |
+
" <td>2024-04-16 05:52:40</td>\n",
|
386 |
+
" <td>2024-06-09 21:47:20</td>\n",
|
387 |
+
" </tr>\n",
|
388 |
+
" <tr>\n",
|
389 |
+
" <th>5</th>\n",
|
390 |
+
" <td>prediction-online-sme</td>\n",
|
391 |
+
" <td>67.417656</td>\n",
|
392 |
+
" <td>8167</td>\n",
|
393 |
+
" <td>2024-04-12 11:51:30</td>\n",
|
394 |
+
" <td>2024-06-10 00:06:00</td>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" <tr>\n",
|
397 |
+
" <th>6</th>\n",
|
398 |
+
" <td>prediction-request-rag</td>\n",
|
399 |
+
" <td>64.217072</td>\n",
|
400 |
+
" <td>1769</td>\n",
|
401 |
+
" <td>2024-04-12 11:39:40</td>\n",
|
402 |
+
" <td>2024-06-09 21:17:45</td>\n",
|
403 |
+
" </tr>\n",
|
404 |
+
" <tr>\n",
|
405 |
+
" <th>7</th>\n",
|
406 |
+
" <td>prediction-request-rag-claude</td>\n",
|
407 |
+
" <td>69.554566</td>\n",
|
408 |
+
" <td>4490</td>\n",
|
409 |
+
" <td>2024-04-12 11:14:30</td>\n",
|
410 |
+
" <td>2024-06-07 11:42:30</td>\n",
|
411 |
+
" </tr>\n",
|
412 |
+
" <tr>\n",
|
413 |
+
" <th>8</th>\n",
|
414 |
+
" <td>prediction-request-reasoning</td>\n",
|
415 |
+
" <td>68.813594</td>\n",
|
416 |
+
" <td>9828</td>\n",
|
417 |
+
" <td>2024-04-12 11:57:05</td>\n",
|
418 |
+
" <td>2024-06-09 21:50:45</td>\n",
|
419 |
+
" </tr>\n",
|
420 |
+
" <tr>\n",
|
421 |
+
" <th>9</th>\n",
|
422 |
+
" <td>prediction-request-reasoning-claude</td>\n",
|
423 |
+
" <td>68.910256</td>\n",
|
424 |
+
" <td>2184</td>\n",
|
425 |
+
" <td>2024-04-12 11:53:55</td>\n",
|
426 |
+
" <td>2024-06-05 05:00:10</td>\n",
|
427 |
+
" </tr>\n",
|
428 |
+
" <tr>\n",
|
429 |
+
" <th>10</th>\n",
|
430 |
+
" <td>prediction-url-cot-claude</td>\n",
|
431 |
+
" <td>64.584980</td>\n",
|
432 |
+
" <td>1265</td>\n",
|
433 |
+
" <td>2024-04-12 11:37:15</td>\n",
|
434 |
+
" <td>2024-06-05 05:21:10</td>\n",
|
435 |
+
" </tr>\n",
|
436 |
+
" </tbody>\n",
|
437 |
+
"</table>\n",
|
438 |
+
"</div>"
|
439 |
+
],
|
440 |
+
"text/plain": [
|
441 |
+
" tool tool_accuracy total_requests \\\n",
|
442 |
+
"0 claude-prediction-offline 66.308244 279 \n",
|
443 |
+
"1 claude-prediction-online 58.914027 1105 \n",
|
444 |
+
"2 prediction-offline 67.717915 2283 \n",
|
445 |
+
"3 prediction-offline-sme 55.555556 18 \n",
|
446 |
+
"4 prediction-online 65.459066 5631 \n",
|
447 |
+
"5 prediction-online-sme 67.417656 8167 \n",
|
448 |
+
"6 prediction-request-rag 64.217072 1769 \n",
|
449 |
+
"7 prediction-request-rag-claude 69.554566 4490 \n",
|
450 |
+
"8 prediction-request-reasoning 68.813594 9828 \n",
|
451 |
+
"9 prediction-request-reasoning-claude 68.910256 2184 \n",
|
452 |
+
"10 prediction-url-cot-claude 64.584980 1265 \n",
|
453 |
+
"\n",
|
454 |
+
" min max \n",
|
455 |
+
"0 2024-04-23 13:09:30 2024-06-10 00:31:30 \n",
|
456 |
+
"1 2024-04-12 12:24:20 2024-06-09 21:41:20 \n",
|
457 |
+
"2 2024-04-12 12:20:10 2024-06-08 23:45:00 \n",
|
458 |
+
"3 2024-04-16 07:58:45 2024-04-29 20:45:15 \n",
|
459 |
+
"4 2024-04-16 05:52:40 2024-06-09 21:47:20 \n",
|
460 |
+
"5 2024-04-12 11:51:30 2024-06-10 00:06:00 \n",
|
461 |
+
"6 2024-04-12 11:39:40 2024-06-09 21:17:45 \n",
|
462 |
+
"7 2024-04-12 11:14:30 2024-06-07 11:42:30 \n",
|
463 |
+
"8 2024-04-12 11:57:05 2024-06-09 21:50:45 \n",
|
464 |
+
"9 2024-04-12 11:53:55 2024-06-05 05:00:10 \n",
|
465 |
+
"10 2024-04-12 11:37:15 2024-06-05 05:21:10 "
|
466 |
+
]
|
467 |
+
},
|
468 |
+
"execution_count": 10,
|
469 |
+
"metadata": {},
|
470 |
+
"output_type": "execute_result"
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"source": [
|
474 |
+
"total = wins.merge(timeline,how=\"left\", on=\"tool\")\n",
|
475 |
+
"total"
|
476 |
]
|
477 |
},
|
478 |
{
|
|
|
2502 |
"name": "python",
|
2503 |
"nbconvert_exporter": "python",
|
2504 |
"pygments_lexer": "ipython3",
|
2505 |
+
"version": "3.12.3"
|
2506 |
}
|
2507 |
},
|
2508 |
"nbformat": 4,
|
scripts/profitability.py
CHANGED
@@ -419,8 +419,6 @@ def prepare_profitalibity_data(rpc: str):
|
|
419 |
timestamp_60_days_ago = (DATETIME_60_DAYS_AGO).timestamp()
|
420 |
fpmmTrades = create_fpmmTrades(rpc, from_timestamp=timestamp_60_days_ago)
|
421 |
fpmmTrades.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
|
422 |
-
# This is not needed
|
423 |
-
# fpmmTrades = pd.read_parquet(DATA_DIR / "fpmmTrades.parquet")
|
424 |
|
425 |
# make sure trader_address is in the columns
|
426 |
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
@@ -610,7 +608,7 @@ def summary_analyse(df):
|
|
610 |
def run_profitability_analysis(rpc):
|
611 |
"""Create all trades analysis."""
|
612 |
|
613 |
-
# load dfs from
|
614 |
print("Preparing data...")
|
615 |
fpmmTrades, tools = prepare_profitalibity_data(rpc)
|
616 |
tools["trader_address"] = tools["trader_address"].str.lower()
|
@@ -623,7 +621,7 @@ def run_profitability_analysis(rpc):
|
|
623 |
print("Summarising trades...")
|
624 |
summary_df = summary_analyse(all_trades_df)
|
625 |
|
626 |
-
# save to
|
627 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
628 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
629 |
|
|
|
419 |
timestamp_60_days_ago = (DATETIME_60_DAYS_AGO).timestamp()
|
420 |
fpmmTrades = create_fpmmTrades(rpc, from_timestamp=timestamp_60_days_ago)
|
421 |
fpmmTrades.to_parquet(DATA_DIR / "fpmmTrades.parquet", index=False)
|
|
|
|
|
422 |
|
423 |
# make sure trader_address is in the columns
|
424 |
assert "trader_address" in fpmmTrades.columns, "trader_address column not found"
|
|
|
608 |
def run_profitability_analysis(rpc):
|
609 |
"""Create all trades analysis."""
|
610 |
|
611 |
+
# load dfs from data folder for analysis
|
612 |
print("Preparing data...")
|
613 |
fpmmTrades, tools = prepare_profitalibity_data(rpc)
|
614 |
tools["trader_address"] = tools["trader_address"].str.lower()
|
|
|
621 |
print("Summarising trades...")
|
622 |
summary_df = summary_analyse(all_trades_df)
|
623 |
|
624 |
+
# save to parquet
|
625 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
626 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
627 |
|
scripts/pull_data.py
CHANGED
@@ -17,7 +17,9 @@ from markets import (
|
|
17 |
from tools import (
|
18 |
etl as tools_etl,
|
19 |
DEFAULT_FILENAME as TOOLS_FILENAME,
|
|
|
20 |
)
|
|
|
21 |
from profitability import run_profitability_analysis
|
22 |
|
23 |
import gc
|
@@ -27,6 +29,7 @@ logging.basicConfig(level=logging.INFO)
|
|
27 |
SCRIPTS_DIR = Path(__file__).parent
|
28 |
ROOT_DIR = SCRIPTS_DIR.parent
|
29 |
DATA_DIR = ROOT_DIR / "data"
|
|
|
30 |
|
31 |
|
32 |
def get_question(text: str) -> str:
|
@@ -149,6 +152,16 @@ def weekly_analysis():
|
|
149 |
|
150 |
with open(DATA_DIR / "t_map.pkl", "wb") as f:
|
151 |
pickle.dump(t_map, f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# clean and release all memory
|
153 |
del tools
|
154 |
del fpmms
|
|
|
17 |
from tools import (
|
18 |
etl as tools_etl,
|
19 |
DEFAULT_FILENAME as TOOLS_FILENAME,
|
20 |
+
update_tools_accuracy,
|
21 |
)
|
22 |
+
from app import INC_TOOLS
|
23 |
from profitability import run_profitability_analysis
|
24 |
|
25 |
import gc
|
|
|
29 |
SCRIPTS_DIR = Path(__file__).parent
|
30 |
ROOT_DIR = SCRIPTS_DIR.parent
|
31 |
DATA_DIR = ROOT_DIR / "data"
|
32 |
+
ACCURACY_FILENAME = "tools_accuracy.csv"
|
33 |
|
34 |
|
35 |
def get_question(text: str) -> str:
|
|
|
152 |
|
153 |
with open(DATA_DIR / "t_map.pkl", "wb") as f:
|
154 |
pickle.dump(t_map, f)
|
155 |
+
|
156 |
+
# Computing tools accuracy information
|
157 |
+
print("Computing tool accuracy information")
|
158 |
+
# Check if the file exists
|
159 |
+
acc_data = None
|
160 |
+
if os.path.exists(DATA_DIR / ACCURACY_FILENAME):
|
161 |
+
acc_data = pd.read_csv(DATA_DIR / ACCURACY_FILENAME)
|
162 |
+
update_tools_accuracy(acc_data, tools, INC_TOOLS)
|
163 |
+
# TODO save acc_data into a CSV file
|
164 |
+
|
165 |
# clean and release all memory
|
166 |
del tools
|
167 |
del fpmms
|
scripts/tools.py
CHANGED
@@ -470,20 +470,6 @@ def etl(
|
|
470 |
|
471 |
transformed = transformer(contents)
|
472 |
|
473 |
-
# Remove appending data, always new files
|
474 |
-
# if os.path.exists(DATA_DIR / events_filename):
|
475 |
-
# old = pd.read_parquet(DATA_DIR / events_filename)
|
476 |
-
|
477 |
-
# # Reset index to avoid index conflicts
|
478 |
-
# old.reset_index(drop=True, inplace=True)
|
479 |
-
# transformed.reset_index(drop=True, inplace=True)
|
480 |
-
|
481 |
-
# # Concatenate DataFrames
|
482 |
-
# transformed = pd.concat([old, transformed], ignore_index=True)
|
483 |
-
|
484 |
-
# # Drop duplicates if necessary
|
485 |
-
# transformed.drop_duplicates(subset=REQUEST_ID_FIELD, inplace=True)
|
486 |
-
|
487 |
event_to_contents[event_name] = transformed.copy()
|
488 |
|
489 |
# Store progress
|
@@ -495,6 +481,42 @@ def etl(
|
|
495 |
return tools
|
496 |
|
497 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
if __name__ == "__main__":
|
499 |
RPCs = [
|
500 |
"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a",
|
|
|
470 |
|
471 |
transformed = transformer(contents)
|
472 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
event_to_contents[event_name] = transformed.copy()
|
474 |
|
475 |
# Store progress
|
|
|
481 |
return tools
|
482 |
|
483 |
|
484 |
+
def update_tools_accuracy(
|
485 |
+
tools_acc: pd.DataFrame, tools_df: pd.DataFrame, inc_tools: List[str]
|
486 |
+
) -> pd.DataFrame:
|
487 |
+
"""To compute/update the latest accuracy information for the different mech tools"""
|
488 |
+
|
489 |
+
# computation of the accuracy information
|
490 |
+
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
491 |
+
# filtering errors
|
492 |
+
tools_non_error = tools_inc[tools_inc["error"] != 1]
|
493 |
+
tools_non_error.loc[:, "currentAnswer"] = tools_non_error["currentAnswer"].replace(
|
494 |
+
{"no": "No", "yes": "Yes"}
|
495 |
+
)
|
496 |
+
tools_non_error = tools_non_error[
|
497 |
+
tools_non_error["currentAnswer"].isin(["Yes", "No"])
|
498 |
+
]
|
499 |
+
tools_non_error = tools_non_error[tools_non_error["vote"].isin(["Yes", "No"])]
|
500 |
+
tools_non_error["win"] = (
|
501 |
+
tools_non_error["currentAnswer"] == tools_non_error["vote"]
|
502 |
+
).astype(int)
|
503 |
+
tools_non_error.columns = tools_non_error.columns.astype(str)
|
504 |
+
wins = tools_non_error.groupby(["tool", "win"]).size().unstack().fillna(0)
|
505 |
+
wins["tool_accuracy"] = (wins[1] / (wins[0] + wins[1])) * 100
|
506 |
+
wins.reset_index(inplace=True)
|
507 |
+
wins["total_requests"] = wins[0] + wins[1]
|
508 |
+
wins.columns = wins.columns.astype(str)
|
509 |
+
wins = wins[["tool", "tool_accuracy", "total_requests"]]
|
510 |
+
timeline = tools_non_error.groupby(["tool"])["request_time"].agg(["min", "max"])
|
511 |
+
acc_info = wins.merge(timeline, how="left", on="tool")
|
512 |
+
|
513 |
+
if tools_acc is None:
|
514 |
+
print("Creating accuracy file for the first time")
|
515 |
+
return acc_info
|
516 |
+
|
517 |
+
# TODO update the old information
|
518 |
+
|
519 |
+
|
520 |
if __name__ == "__main__":
|
521 |
RPCs = [
|
522 |
"https://lb.nodies.app/v1/406d8dcc043f4cb3959ed7d6673d311a",
|