rosacastillo
commited on
Commit
·
e51ae04
1
Parent(s):
d58fc7b
new non-agent graphs
Browse files- app.py +91 -8
- data/all_trades_profitability.parquet +2 -2
- data/outliers.parquet +2 -2
- scripts/profitability.py +12 -9
- scripts/pull_data.py +0 -2
- scripts/update_nr_mech_calls.py +60 -0
- tabs/metrics.py +13 -2
- tabs/staking.py +5 -3
- tabs/trades.py +84 -5
app.py
CHANGED
@@ -12,6 +12,7 @@ from tabs.trades import (
|
|
12 |
integrated_plot_trades_per_market_by_week,
|
13 |
integrated_plot_trades_per_market_by_week_v2,
|
14 |
integrated_plot_winning_trades_per_market_by_week,
|
|
|
15 |
)
|
16 |
from tabs.staking import plot_staking_trades_per_market_by_week
|
17 |
|
@@ -197,19 +198,29 @@ with demo:
|
|
197 |
with gr.Row():
|
198 |
gr.Markdown("# Trend of weekly trades")
|
199 |
with gr.Row():
|
200 |
-
trades_by_week =
|
201 |
trades_df=trades_df
|
202 |
)
|
203 |
|
204 |
with gr.Row():
|
205 |
-
gr.
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
def update_trade_details(trade_detail, trade_details_plot):
|
212 |
-
print(f"user selected option= {trade_detail}")
|
213 |
new_plot = plot_trade_metrics(
|
214 |
metric_name=trade_detail,
|
215 |
trades_df=trades_df,
|
@@ -217,7 +228,7 @@ with demo:
|
|
217 |
return new_plot
|
218 |
|
219 |
with gr.Row():
|
220 |
-
gr.Markdown("# ⚖️
|
221 |
with gr.Row():
|
222 |
trade_details_selector = gr.Dropdown(
|
223 |
label="Select a trade metric",
|
@@ -239,6 +250,78 @@ with demo:
|
|
239 |
inputs=[trade_details_selector, trade_details_plot],
|
240 |
outputs=[trade_details_plot],
|
241 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
with gr.TabItem("🔒 Staking traders"):
|
243 |
with gr.Row():
|
244 |
gr.Markdown("# Trades conducted at the Pearl markets")
|
|
|
12 |
integrated_plot_trades_per_market_by_week,
|
13 |
integrated_plot_trades_per_market_by_week_v2,
|
14 |
integrated_plot_winning_trades_per_market_by_week,
|
15 |
+
integrated_plot_winning_trades_per_market_by_week_v2,
|
16 |
)
|
17 |
from tabs.staking import plot_staking_trades_per_market_by_week
|
18 |
|
|
|
198 |
with gr.Row():
|
199 |
gr.Markdown("# Trend of weekly trades")
|
200 |
with gr.Row():
|
201 |
+
trades_by_week = integrated_plot_trades_per_market_by_week_v2(
|
202 |
trades_df=trades_df
|
203 |
)
|
204 |
|
205 |
with gr.Row():
|
206 |
+
with gr.Column(scale=1):
|
207 |
+
gr.Markdown("# Weekly percentage of winning for Agent based trades")
|
208 |
+
agent_winning_trades = (
|
209 |
+
integrated_plot_winning_trades_per_market_by_week_v2(
|
210 |
+
trades_df=trades_df, trader_filter="agent"
|
211 |
+
)
|
212 |
+
)
|
213 |
+
with gr.Column(scale=1):
|
214 |
+
gr.Markdown(
|
215 |
+
"# Weekly percentage of winning for Non-agent based trades"
|
216 |
+
)
|
217 |
+
non_agent_winning_trades = (
|
218 |
+
integrated_plot_winning_trades_per_market_by_week_v2(
|
219 |
+
trades_df=trades_df, trader_filter="non_agent"
|
220 |
+
)
|
221 |
+
)
|
222 |
|
223 |
def update_trade_details(trade_detail, trade_details_plot):
|
|
|
224 |
new_plot = plot_trade_metrics(
|
225 |
metric_name=trade_detail,
|
226 |
trades_df=trades_df,
|
|
|
228 |
return new_plot
|
229 |
|
230 |
with gr.Row():
|
231 |
+
gr.Markdown("# ⚖️ Weekly trading metrics for all trades")
|
232 |
with gr.Row():
|
233 |
trade_details_selector = gr.Dropdown(
|
234 |
label="Select a trade metric",
|
|
|
250 |
inputs=[trade_details_selector, trade_details_plot],
|
251 |
outputs=[trade_details_plot],
|
252 |
)
|
253 |
+
|
254 |
+
# Agentic traders graph
|
255 |
+
with gr.Row():
|
256 |
+
gr.Markdown("# Weekly trading metrics for trades coming from Agents")
|
257 |
+
with gr.Row():
|
258 |
+
trade_a_details_selector = gr.Dropdown(
|
259 |
+
label="Select a trade metric",
|
260 |
+
choices=trade_metric_choices,
|
261 |
+
value=default_trade_metric,
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column(scale=3):
|
266 |
+
a_trade_details_plot = plot_trade_metrics(
|
267 |
+
metric_name=default_trade_metric,
|
268 |
+
trades_df=trades_df,
|
269 |
+
trader_filter="agent",
|
270 |
+
)
|
271 |
+
with gr.Column(scale=1):
|
272 |
+
trade_details_text = get_trade_metrics_text()
|
273 |
+
|
274 |
+
def update_a_trade_details(trade_detail, trade_details_plot):
|
275 |
+
new_a_plot = plot_trade_metrics(
|
276 |
+
metric_name=trade_detail,
|
277 |
+
trades_df=trades_df,
|
278 |
+
trader_filter="agent",
|
279 |
+
)
|
280 |
+
return new_a_plot
|
281 |
+
|
282 |
+
trade_a_details_selector.change(
|
283 |
+
update_a_trade_details,
|
284 |
+
inputs=[trade_a_details_selector, a_trade_details_plot],
|
285 |
+
outputs=[a_trade_details_plot],
|
286 |
+
)
|
287 |
+
|
288 |
+
# Non-agentic traders graph
|
289 |
+
with gr.Row():
|
290 |
+
gr.Markdown(
|
291 |
+
"# Weekly trading metrics for trades coming from Non-agents"
|
292 |
+
)
|
293 |
+
with gr.Row():
|
294 |
+
trade_na_details_selector = gr.Dropdown(
|
295 |
+
label="Select a trade metric",
|
296 |
+
choices=trade_metric_choices,
|
297 |
+
value=default_trade_metric,
|
298 |
+
)
|
299 |
+
|
300 |
+
with gr.Row():
|
301 |
+
with gr.Column(scale=3):
|
302 |
+
na_trade_details_plot = plot_trade_metrics(
|
303 |
+
metric_name=default_trade_metric,
|
304 |
+
trades_df=trades_df,
|
305 |
+
trader_filter="non_agent",
|
306 |
+
)
|
307 |
+
with gr.Column(scale=1):
|
308 |
+
trade_details_text = get_trade_metrics_text()
|
309 |
+
|
310 |
+
def update_na_trade_details(trade_detail, trade_details_plot):
|
311 |
+
print(f"user selected option= {trade_detail}")
|
312 |
+
new_a_plot = plot_trade_metrics(
|
313 |
+
metric_name=trade_detail,
|
314 |
+
trades_df=trades_df,
|
315 |
+
trader_filter="non_agent",
|
316 |
+
)
|
317 |
+
return new_a_plot
|
318 |
+
|
319 |
+
trade_na_details_selector.change(
|
320 |
+
update_na_trade_details,
|
321 |
+
inputs=[trade_na_details_selector, na_trade_details_plot],
|
322 |
+
outputs=[na_trade_details_plot],
|
323 |
+
)
|
324 |
+
|
325 |
with gr.TabItem("🔒 Staking traders"):
|
326 |
with gr.Row():
|
327 |
gr.Markdown("# Trades conducted at the Pearl markets")
|
data/all_trades_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3068c54295d43c0d40f331cf3ad988fb8bf150bed0c948d3103161d7d7065f38
|
3 |
+
size 3292156
|
data/outliers.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72326e188a845663048e6ebf368045dfc387eac9a54a38303e9020f5ca112ad6
|
3 |
+
size 18966
|
scripts/profitability.py
CHANGED
@@ -444,15 +444,18 @@ def analyse_trader(
|
|
444 |
winner_trade = True
|
445 |
|
446 |
# Compute mech calls
|
447 |
-
|
448 |
-
num_mech_calls =
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
|
|
456 |
|
457 |
net_earnings = (
|
458 |
earnings
|
|
|
444 |
winner_trade = True
|
445 |
|
446 |
# Compute mech calls
|
447 |
+
if len(tools_usage) == 0:
|
448 |
+
num_mech_calls = 0
|
449 |
+
else:
|
450 |
+
try:
|
451 |
+
num_mech_calls = (
|
452 |
+
tools_usage["prompt_request"]
|
453 |
+
.apply(lambda x: trade["title"] in x)
|
454 |
+
.sum()
|
455 |
+
)
|
456 |
+
except Exception:
|
457 |
+
print(f"Error while getting the number of mech calls")
|
458 |
+
num_mech_calls = 2 # Average value
|
459 |
|
460 |
net_earnings = (
|
461 |
earnings
|
scripts/pull_data.py
CHANGED
@@ -156,8 +156,6 @@ def only_new_weekly_analysis():
|
|
156 |
# merge new json files with old json files
|
157 |
update_json_files()
|
158 |
|
159 |
-
# TODO move new parquet files to a tmp folder
|
160 |
-
|
161 |
try:
|
162 |
updating_timestamps(rpc, TOOLS_FILENAME)
|
163 |
except Exception as e:
|
|
|
156 |
# merge new json files with old json files
|
157 |
update_json_files()
|
158 |
|
|
|
|
|
159 |
try:
|
160 |
updating_timestamps(rpc, TOOLS_FILENAME)
|
161 |
except Exception as e:
|
scripts/update_nr_mech_calls.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from profitability import DATA_DIR, DEFAULT_MECH_FEE, summary_analyse
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
|
6 |
+
def update_roi(row: pd.DataFrame) -> float:
|
7 |
+
new_value = row.net_earnings / (
|
8 |
+
row.collateral_amount
|
9 |
+
+ row.trade_fee_amount
|
10 |
+
+ row.num_mech_calls * DEFAULT_MECH_FEE
|
11 |
+
)
|
12 |
+
return new_value
|
13 |
+
|
14 |
+
|
15 |
+
def update_trade_nr_mech_calls(non_agents: bool = False):
|
16 |
+
try:
|
17 |
+
all_trades_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
18 |
+
tools = pd.read_parquet(DATA_DIR / "tools.parquet")
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error reading the profitability and tools parquet files")
|
21 |
+
|
22 |
+
traders = list(all_trades_df.trader_address.unique())
|
23 |
+
if non_agents:
|
24 |
+
traders = list(
|
25 |
+
all_trades_df.loc[
|
26 |
+
all_trades_df["staking"] == "non_agent"
|
27 |
+
].trader_address.unique()
|
28 |
+
)
|
29 |
+
|
30 |
+
print("before updating")
|
31 |
+
print(
|
32 |
+
all_trades_df.loc[
|
33 |
+
all_trades_df["staking"] == "non_agent"
|
34 |
+
].num_mech_calls.describe()
|
35 |
+
)
|
36 |
+
for trader in tqdm(traders, desc=f"Updating Traders mech calls", unit="traders"):
|
37 |
+
tools_usage = tools[tools["trader_address"] == trader]
|
38 |
+
if len(tools_usage) == 0:
|
39 |
+
tqdm.write(f"trader with no tools usage found {trader}")
|
40 |
+
all_trades_df.loc[
|
41 |
+
all_trades_df["trader_address"] == trader, "nr_mech_calls"
|
42 |
+
] = 0
|
43 |
+
# update roi
|
44 |
+
all_trades_df["roi"] = all_trades_df.apply(lambda x: update_roi(x), axis=1)
|
45 |
+
print("after updating")
|
46 |
+
print(
|
47 |
+
all_trades_df.loc[
|
48 |
+
all_trades_df["staking"] == "non_agent"
|
49 |
+
].num_mech_calls.describe()
|
50 |
+
)
|
51 |
+
|
52 |
+
# saving
|
53 |
+
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
54 |
+
print("Summarising trades...")
|
55 |
+
summary_df = summary_analyse(all_trades_df)
|
56 |
+
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
update_trade_nr_mech_calls(non_agents=True)
|
tabs/metrics.py
CHANGED
@@ -118,7 +118,9 @@ def plot2_trade_details(
|
|
118 |
)
|
119 |
|
120 |
|
121 |
-
def plot_trade_metrics(
|
|
|
|
|
122 |
"""Plots the trade metrics."""
|
123 |
|
124 |
if metric_name == "mech calls":
|
@@ -140,7 +142,16 @@ def plot_trade_metrics(metric_name: str, trades_df: pd.DataFrame) -> gr.Plot:
|
|
140 |
column_name = metric_name
|
141 |
yaxis_title = "Gross profit per trade (xDAI)"
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
fig = px.box(
|
145 |
trades_filtered,
|
146 |
x="month_year_week",
|
|
|
118 |
)
|
119 |
|
120 |
|
121 |
+
def plot_trade_metrics(
|
122 |
+
metric_name: str, trades_df: pd.DataFrame, trader_filter: str = None
|
123 |
+
) -> gr.Plot:
|
124 |
"""Plots the trade metrics."""
|
125 |
|
126 |
if metric_name == "mech calls":
|
|
|
142 |
column_name = metric_name
|
143 |
yaxis_title = "Gross profit per trade (xDAI)"
|
144 |
|
145 |
+
if trader_filter == "agent":
|
146 |
+
trades_filtered = get_boxplot_metrics(
|
147 |
+
column_name, trades_df.loc[trades_df["staking"] != "non_agent"]
|
148 |
+
)
|
149 |
+
elif trader_filter == "non_agent":
|
150 |
+
trades_filtered = get_boxplot_metrics(
|
151 |
+
column_name, trades_df.loc[trades_df["staking"] == "non_agent"]
|
152 |
+
)
|
153 |
+
else:
|
154 |
+
trades_filtered = get_boxplot_metrics(column_name, trades_df)
|
155 |
fig = px.box(
|
156 |
trades_filtered,
|
157 |
x="month_year_week",
|
tabs/staking.py
CHANGED
@@ -24,9 +24,10 @@ def plot_staking_trades_per_market_by_week(
|
|
24 |
trades_all["market_creator"] = "all"
|
25 |
|
26 |
# choose colour
|
27 |
-
|
|
|
28 |
if market_creator == "pearl":
|
29 |
-
market_colour = "
|
30 |
elif market_creator == "quickstart":
|
31 |
market_colour = "goldenrod"
|
32 |
|
@@ -40,6 +41,7 @@ def plot_staking_trades_per_market_by_week(
|
|
40 |
all_filtered_trades["market_creator"] == market_creator
|
41 |
]
|
42 |
print(all_filtered_trades.market_creator.value_counts())
|
|
|
43 |
if market_creator != "all":
|
44 |
all_filtered_trades["staking"] = all_filtered_trades["staking"].replace(
|
45 |
{market_creator: "staking_traders", "non_agent": "non_agent_traders"}
|
@@ -56,7 +58,7 @@ def plot_staking_trades_per_market_by_week(
|
|
56 |
"non_agent": "non_agent_traders",
|
57 |
}
|
58 |
)
|
59 |
-
colour_sequence = ["gray", "
|
60 |
categories_sorted = {
|
61 |
"staking": [
|
62 |
"non_staking_traders",
|
|
|
24 |
trades_all["market_creator"] = "all"
|
25 |
|
26 |
# choose colour
|
27 |
+
|
28 |
+
market_colour = "green"
|
29 |
if market_creator == "pearl":
|
30 |
+
market_colour = "darkviolet"
|
31 |
elif market_creator == "quickstart":
|
32 |
market_colour = "goldenrod"
|
33 |
|
|
|
41 |
all_filtered_trades["market_creator"] == market_creator
|
42 |
]
|
43 |
print(all_filtered_trades.market_creator.value_counts())
|
44 |
+
|
45 |
if market_creator != "all":
|
46 |
all_filtered_trades["staking"] = all_filtered_trades["staking"].replace(
|
47 |
{market_creator: "staking_traders", "non_agent": "non_agent_traders"}
|
|
|
58 |
"non_agent": "non_agent_traders",
|
59 |
}
|
60 |
)
|
61 |
+
colour_sequence = ["gray", "darkviolet", "goldenrod", "black"]
|
62 |
categories_sorted = {
|
63 |
"staking": [
|
64 |
"non_staking_traders",
|
tabs/trades.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
import plotly.graph_objects as go
|
|
|
5 |
|
6 |
|
7 |
HEIGHT = 400
|
@@ -70,13 +71,39 @@ def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFram
|
|
70 |
].count()
|
71 |
* 100
|
72 |
)
|
73 |
-
|
74 |
winning_trades = winning_trades.reset_index()
|
75 |
winning_trades.columns = winning_trades.columns.astype(str)
|
76 |
winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
|
77 |
return winning_trades
|
78 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
81 |
"""Plots the trades data for the given tools and calculates the winning percentage."""
|
82 |
return gr.BarPlot(
|
@@ -150,11 +177,9 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
150 |
.reset_index(name="trades")
|
151 |
)
|
152 |
|
153 |
-
# category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
154 |
-
|
155 |
# Combine the traces
|
156 |
final_traces = []
|
157 |
-
market_colors = {"pearl": "
|
158 |
# First add 'agent' traces
|
159 |
for market in ["pearl", "quickstart", "all"]:
|
160 |
market_data = trades[trades["market_creator"] == market]
|
@@ -171,6 +196,11 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
171 |
final_traces.append(trace)
|
172 |
|
173 |
# Then add 'non_agent' traces
|
|
|
|
|
|
|
|
|
|
|
174 |
for market in ["pearl", "quickstart", "all"]:
|
175 |
market_data = trades[trades["market_creator"] == market]
|
176 |
non_agent_data = market_data[market_data["staking_type"] == "non_agent"]
|
@@ -179,7 +209,7 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
179 |
x=non_agent_data["month_year_week"],
|
180 |
y=non_agent_data["trades"],
|
181 |
name=f"{market}-non_agent",
|
182 |
-
marker_color=
|
183 |
offsetgroup=market,
|
184 |
showlegend=True,
|
185 |
)
|
@@ -238,6 +268,55 @@ def integrated_plot_winning_trades_per_market_by_week(
|
|
238 |
)
|
239 |
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
242 |
"""Plots the winning trades data for the given tools and calculates the winning percentage."""
|
243 |
return gr.BarPlot(
|
|
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
import plotly.graph_objects as go
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
|
7 |
|
8 |
HEIGHT = 400
|
|
|
71 |
].count()
|
72 |
* 100
|
73 |
)
|
74 |
+
|
75 |
winning_trades = winning_trades.reset_index()
|
76 |
winning_trades.columns = winning_trades.columns.astype(str)
|
77 |
winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"]
|
78 |
return winning_trades
|
79 |
|
80 |
|
81 |
+
def get_overall_winning_by_market_and_trader_type(
|
82 |
+
trades_df: pd.DataFrame,
|
83 |
+
) -> pd.DataFrame:
|
84 |
+
"""Gets the overall winning trades data for the given tools and calculates the winning percentage."""
|
85 |
+
# Group by week, market_creator and staking_type
|
86 |
+
winning_trades = (
|
87 |
+
trades_df.groupby(
|
88 |
+
["month_year_week", "market_creator", "staking_type"], sort=False
|
89 |
+
)["winning_trade"].sum()
|
90 |
+
/ trades_df.groupby(
|
91 |
+
["month_year_week", "market_creator", "staking_type"], sort=False
|
92 |
+
)["winning_trade"].count()
|
93 |
+
* 100
|
94 |
+
)
|
95 |
+
|
96 |
+
winning_trades = winning_trades.reset_index()
|
97 |
+
winning_trades.columns = winning_trades.columns.astype(str)
|
98 |
+
winning_trades.columns = [
|
99 |
+
"month_year_week",
|
100 |
+
"market_creator",
|
101 |
+
"staking_type",
|
102 |
+
"winning_trade",
|
103 |
+
]
|
104 |
+
return winning_trades
|
105 |
+
|
106 |
+
|
107 |
def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
108 |
"""Plots the trades data for the given tools and calculates the winning percentage."""
|
109 |
return gr.BarPlot(
|
|
|
177 |
.reset_index(name="trades")
|
178 |
)
|
179 |
|
|
|
|
|
180 |
# Combine the traces
|
181 |
final_traces = []
|
182 |
+
market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"}
|
183 |
# First add 'agent' traces
|
184 |
for market in ["pearl", "quickstart", "all"]:
|
185 |
market_data = trades[trades["market_creator"] == market]
|
|
|
196 |
final_traces.append(trace)
|
197 |
|
198 |
# Then add 'non_agent' traces
|
199 |
+
market_darker_colors = {
|
200 |
+
"pearl": "purple",
|
201 |
+
"quickstart": "darkgoldenrod",
|
202 |
+
"all": "darkgreen",
|
203 |
+
}
|
204 |
for market in ["pearl", "quickstart", "all"]:
|
205 |
market_data = trades[trades["market_creator"] == market]
|
206 |
non_agent_data = market_data[market_data["staking_type"] == "non_agent"]
|
|
|
209 |
x=non_agent_data["month_year_week"],
|
210 |
y=non_agent_data["trades"],
|
211 |
name=f"{market}-non_agent",
|
212 |
+
marker_color=market_darker_colors[market],
|
213 |
offsetgroup=market,
|
214 |
showlegend=True,
|
215 |
)
|
|
|
268 |
)
|
269 |
|
270 |
|
271 |
+
def integrated_plot_winning_trades_per_market_by_week_v2(
|
272 |
+
trades_df: pd.DataFrame, trader_filter: str = None
|
273 |
+
) -> gr.Plot:
|
274 |
+
# adding the total
|
275 |
+
trades_all = trades_df.copy(deep=True)
|
276 |
+
trades_all["market_creator"] = "all"
|
277 |
+
|
278 |
+
# merging both dataframes
|
279 |
+
all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True)
|
280 |
+
all_filtered_trades = all_filtered_trades.sort_values(
|
281 |
+
by="creation_timestamp", ascending=True
|
282 |
+
)
|
283 |
+
# Create binary staking category
|
284 |
+
all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply(
|
285 |
+
lambda x: "non_agent" if x == "non_agent" else "agent"
|
286 |
+
)
|
287 |
+
if trader_filter is None:
|
288 |
+
final_df = get_overall_winning_by_market_trades(all_filtered_trades)
|
289 |
+
else:
|
290 |
+
final_df = get_overall_winning_by_market_and_trader_type(all_filtered_trades)
|
291 |
+
|
292 |
+
color_discrete_sequence = ["darkviolet", "goldenrod", "green"]
|
293 |
+
if trader_filter == "agent":
|
294 |
+
final_df = final_df[final_df["staking_type"] == "agent"]
|
295 |
+
elif trader_filter == "non_agent":
|
296 |
+
final_df = final_df[final_df["staking_type"] == "non_agent"]
|
297 |
+
color_discrete_sequence = ["purple", "darkgoldenrod", "darkgreen"]
|
298 |
+
|
299 |
+
fig = px.bar(
|
300 |
+
final_df,
|
301 |
+
x="month_year_week",
|
302 |
+
y="winning_trade",
|
303 |
+
color="market_creator",
|
304 |
+
barmode="group",
|
305 |
+
color_discrete_sequence=color_discrete_sequence,
|
306 |
+
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
|
307 |
+
)
|
308 |
+
fig.update_layout(
|
309 |
+
xaxis_title="Week",
|
310 |
+
yaxis_title="Weekly % of winning trades",
|
311 |
+
legend=dict(yanchor="top", y=0.5),
|
312 |
+
)
|
313 |
+
# fig.update_layout(width=WIDTH, height=HEIGHT)
|
314 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
315 |
+
return gr.Plot(
|
316 |
+
value=fig,
|
317 |
+
)
|
318 |
+
|
319 |
+
|
320 |
def plot_winning_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot:
|
321 |
"""Plots the winning trades data for the given tools and calculates the winning percentage."""
|
322 |
return gr.BarPlot(
|