rosacastillo
commited on
Commit
·
f7c2ff7
1
Parent(s):
7aa7dd1
adding new unknown trader category
Browse files- app.py +67 -49
- data/all_trades_profitability.parquet +2 -2
- data/unknown_traders.parquet +3 -0
- scripts/cleaning_old_info.py +2 -3
- scripts/daily_data.py +9 -0
- scripts/{update_nr_mech_calls.py → nr_mech_calls.py} +24 -5
- scripts/profitability.py +18 -18
- scripts/pull_data.py +1 -1
- scripts/staking.py +1 -1
- scripts/utils.py +1 -0
- tabs/staking.py +0 -2
- tabs/trades.py +8 -2
app.py
CHANGED
@@ -70,43 +70,19 @@ def get_logger():
|
|
70 |
logger = get_logger()
|
71 |
|
72 |
|
73 |
-
def get_last_one_month_data():
|
74 |
-
"""
|
75 |
-
Get the last one month data from the tools.parquet file
|
76 |
-
"""
|
77 |
-
logger.info("Getting last one month data")
|
78 |
-
con = duckdb.connect(":memory:")
|
79 |
-
one_months_ago = (datetime.now() - timedelta(days=60)).strftime("%Y-%m-%d")
|
80 |
-
|
81 |
-
# Query to fetch data from all_trades_profitability.parquet
|
82 |
-
query2 = f"""
|
83 |
-
SELECT *
|
84 |
-
FROM read_parquet('./data/all_trades_profitability.parquet')
|
85 |
-
WHERE creation_timestamp >= '{one_months_ago}'
|
86 |
-
"""
|
87 |
-
df2 = con.execute(query2).fetchdf()
|
88 |
-
logger.info("Got last one month data from all_trades_profitability.parquet")
|
89 |
-
|
90 |
-
query1 = f"""
|
91 |
-
SELECT *
|
92 |
-
FROM read_parquet('./data/tools.parquet')
|
93 |
-
WHERE request_time >= '{one_months_ago}'
|
94 |
-
"""
|
95 |
-
df1 = con.execute(query1).fetchdf()
|
96 |
-
logger.info("Got last one month data from tools.parquet")
|
97 |
-
|
98 |
-
con.close()
|
99 |
-
|
100 |
-
return df1, df2
|
101 |
-
|
102 |
-
|
103 |
def get_all_data():
|
104 |
"""
|
105 |
-
Get all data from the
|
106 |
"""
|
107 |
logger.info("Getting all data")
|
108 |
|
109 |
con = duckdb.connect(":memory:")
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# Query to fetch invalid trades data
|
111 |
query4 = f"""
|
112 |
SELECT *
|
@@ -138,18 +114,21 @@ def get_all_data():
|
|
138 |
|
139 |
con.close()
|
140 |
|
141 |
-
return df1, df2, df3, df4
|
142 |
|
143 |
|
144 |
def prepare_data():
|
145 |
"""
|
146 |
Prepare the data for the dashboard
|
147 |
"""
|
148 |
-
tools_df, trades_df, tools_accuracy_info, invalid_trades =
|
|
|
|
|
149 |
print(trades_df.info())
|
150 |
|
151 |
tools_df = prepare_tools(tools_df)
|
152 |
trades_df = prepare_trades(trades_df)
|
|
|
153 |
|
154 |
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
|
155 |
print("weighted accuracy info")
|
@@ -166,11 +145,14 @@ def prepare_data():
|
|
166 |
outliers.to_parquet("./data/outliers.parquet")
|
167 |
trades_df = trades_df.loc[trades_df["roi"] < 1000]
|
168 |
|
169 |
-
return tools_df, trades_df, tools_accuracy_info, invalid_trades
|
170 |
|
171 |
|
172 |
-
tools_df, trades_df, tools_accuracy_info, invalid_trades =
|
|
|
|
|
173 |
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
|
|
|
174 |
|
175 |
demo = gr.Blocks()
|
176 |
|
@@ -255,7 +237,7 @@ with demo:
|
|
255 |
"# Weekly trading metrics for trades coming from 🌊 Olas traders"
|
256 |
)
|
257 |
with gr.Row():
|
258 |
-
|
259 |
label="Select a trade metric",
|
260 |
choices=trade_metric_choices,
|
261 |
value=default_trade_metric,
|
@@ -263,15 +245,15 @@ with demo:
|
|
263 |
|
264 |
with gr.Row():
|
265 |
with gr.Column(scale=3):
|
266 |
-
|
267 |
metric_name=default_trade_metric,
|
268 |
trades_df=trades_df,
|
269 |
-
trader_filter="
|
270 |
)
|
271 |
with gr.Column(scale=1):
|
272 |
trade_details_text = get_trade_metrics_text()
|
273 |
|
274 |
-
def update_a_trade_details(trade_detail,
|
275 |
new_a_plot = plot_trade_metrics(
|
276 |
metric_name=trade_detail,
|
277 |
trades_df=trades_df,
|
@@ -279,10 +261,10 @@ with demo:
|
|
279 |
)
|
280 |
return new_a_plot
|
281 |
|
282 |
-
|
283 |
update_a_trade_details,
|
284 |
-
inputs=[
|
285 |
-
outputs=[
|
286 |
)
|
287 |
|
288 |
# Non-Olasic traders graph
|
@@ -291,7 +273,7 @@ with demo:
|
|
291 |
"# Weekly trading metrics for trades coming from Non-Olas traders"
|
292 |
)
|
293 |
with gr.Row():
|
294 |
-
|
295 |
label="Select a trade metric",
|
296 |
choices=trade_metric_choices,
|
297 |
value=default_trade_metric,
|
@@ -299,7 +281,7 @@ with demo:
|
|
299 |
|
300 |
with gr.Row():
|
301 |
with gr.Column(scale=3):
|
302 |
-
|
303 |
metric_name=default_trade_metric,
|
304 |
trades_df=trades_df,
|
305 |
trader_filter="non_Olas",
|
@@ -308,23 +290,59 @@ with demo:
|
|
308 |
trade_details_text = get_trade_metrics_text()
|
309 |
|
310 |
def update_na_trade_details(trade_detail, trade_details_plot):
|
311 |
-
|
312 |
metric_name=trade_detail,
|
313 |
trades_df=trades_df,
|
314 |
trader_filter="non_Olas",
|
315 |
)
|
316 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
|
319 |
update_na_trade_details,
|
320 |
-
inputs=[
|
321 |
-
outputs=[
|
322 |
)
|
323 |
|
324 |
with gr.TabItem("🔒 Staking traders"):
|
325 |
with gr.Row():
|
326 |
gr.Markdown("# Trades conducted at the Pearl markets")
|
327 |
with gr.Row():
|
|
|
328 |
staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
|
329 |
trades_df=trades_df, market_creator="pearl"
|
330 |
)
|
|
|
70 |
logger = get_logger()
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def get_all_data():
|
74 |
"""
|
75 |
+
Get all data from the parquet files
|
76 |
"""
|
77 |
logger.info("Getting all data")
|
78 |
|
79 |
con = duckdb.connect(":memory:")
|
80 |
+
query5 = f"""
|
81 |
+
SELECT *
|
82 |
+
FROM read_parquet('./data/unknown_traders.parquet')
|
83 |
+
"""
|
84 |
+
df5 = con.execute(query5).fetchdf()
|
85 |
+
|
86 |
# Query to fetch invalid trades data
|
87 |
query4 = f"""
|
88 |
SELECT *
|
|
|
114 |
|
115 |
con.close()
|
116 |
|
117 |
+
return df1, df2, df3, df4, df5
|
118 |
|
119 |
|
120 |
def prepare_data():
|
121 |
"""
|
122 |
Prepare the data for the dashboard
|
123 |
"""
|
124 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades, unknown_trades = (
|
125 |
+
get_all_data()
|
126 |
+
)
|
127 |
print(trades_df.info())
|
128 |
|
129 |
tools_df = prepare_tools(tools_df)
|
130 |
trades_df = prepare_trades(trades_df)
|
131 |
+
unknown_trades = prepare_trades(unknown_trades)
|
132 |
|
133 |
tools_accuracy_info = compute_weighted_accuracy(tools_accuracy_info)
|
134 |
print("weighted accuracy info")
|
|
|
145 |
outliers.to_parquet("./data/outliers.parquet")
|
146 |
trades_df = trades_df.loc[trades_df["roi"] < 1000]
|
147 |
|
148 |
+
return tools_df, trades_df, tools_accuracy_info, invalid_trades, unknown_trades
|
149 |
|
150 |
|
151 |
+
tools_df, trades_df, tools_accuracy_info, invalid_trades, unknown_trades = (
|
152 |
+
prepare_data()
|
153 |
+
)
|
154 |
trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True)
|
155 |
+
unknown_trades = unknown_trades.sort_values(by="creation_timestamp", ascending=True)
|
156 |
|
157 |
demo = gr.Blocks()
|
158 |
|
|
|
237 |
"# Weekly trading metrics for trades coming from 🌊 Olas traders"
|
238 |
)
|
239 |
with gr.Row():
|
240 |
+
trade_o_details_selector = gr.Dropdown(
|
241 |
label="Select a trade metric",
|
242 |
choices=trade_metric_choices,
|
243 |
value=default_trade_metric,
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
with gr.Column(scale=3):
|
248 |
+
trade_o_details_plot = plot_trade_metrics(
|
249 |
metric_name=default_trade_metric,
|
250 |
trades_df=trades_df,
|
251 |
+
trader_filter="Olas",
|
252 |
)
|
253 |
with gr.Column(scale=1):
|
254 |
trade_details_text = get_trade_metrics_text()
|
255 |
|
256 |
+
def update_a_trade_details(trade_detail, trade_o_details_plot):
|
257 |
new_a_plot = plot_trade_metrics(
|
258 |
metric_name=trade_detail,
|
259 |
trades_df=trades_df,
|
|
|
261 |
)
|
262 |
return new_a_plot
|
263 |
|
264 |
+
trade_o_details_selector.change(
|
265 |
update_a_trade_details,
|
266 |
+
inputs=[trade_o_details_selector, trade_o_details_plot],
|
267 |
+
outputs=[trade_o_details_plot],
|
268 |
)
|
269 |
|
270 |
# Non-Olasic traders graph
|
|
|
273 |
"# Weekly trading metrics for trades coming from Non-Olas traders"
|
274 |
)
|
275 |
with gr.Row():
|
276 |
+
trade_no_details_selector = gr.Dropdown(
|
277 |
label="Select a trade metric",
|
278 |
choices=trade_metric_choices,
|
279 |
value=default_trade_metric,
|
|
|
281 |
|
282 |
with gr.Row():
|
283 |
with gr.Column(scale=3):
|
284 |
+
trade_no_details_plot = plot_trade_metrics(
|
285 |
metric_name=default_trade_metric,
|
286 |
trades_df=trades_df,
|
287 |
trader_filter="non_Olas",
|
|
|
290 |
trade_details_text = get_trade_metrics_text()
|
291 |
|
292 |
def update_na_trade_details(trade_detail, trade_details_plot):
|
293 |
+
new_no_plot = plot_trade_metrics(
|
294 |
metric_name=trade_detail,
|
295 |
trades_df=trades_df,
|
296 |
trader_filter="non_Olas",
|
297 |
)
|
298 |
+
return new_no_plot
|
299 |
+
|
300 |
+
trade_no_details_selector.change(
|
301 |
+
update_na_trade_details,
|
302 |
+
inputs=[trade_no_details_selector, trade_no_details_plot],
|
303 |
+
outputs=[trade_no_details_plot],
|
304 |
+
)
|
305 |
+
# Unknown traders graph
|
306 |
+
with gr.Row():
|
307 |
+
gr.Markdown(
|
308 |
+
"# Weekly trading metrics for trades coming from unknown traders"
|
309 |
+
)
|
310 |
+
with gr.Row():
|
311 |
+
trade_u_details_selector = gr.Dropdown(
|
312 |
+
label="Select a trade metric",
|
313 |
+
choices=trade_metric_choices,
|
314 |
+
value=default_trade_metric,
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
with gr.Column(scale=3):
|
319 |
+
trade_u_details_plot = plot_trade_metrics(
|
320 |
+
metric_name=default_trade_metric,
|
321 |
+
trades_df=unknown_trades,
|
322 |
+
trader_filter="all",
|
323 |
+
)
|
324 |
+
with gr.Column(scale=1):
|
325 |
+
trade_details_text = get_trade_metrics_text()
|
326 |
+
|
327 |
+
def update_na_trade_details(trade_detail, trade_u_details_plot):
|
328 |
+
new_u_plot = plot_trade_metrics(
|
329 |
+
metric_name=trade_detail,
|
330 |
+
trades_df=unknown_trades,
|
331 |
+
trader_filter="all",
|
332 |
+
)
|
333 |
+
return new_u_plot
|
334 |
|
335 |
+
trade_u_details_selector.change(
|
336 |
update_na_trade_details,
|
337 |
+
inputs=[trade_u_details_selector, trade_u_details_plot],
|
338 |
+
outputs=[trade_u_details_plot],
|
339 |
)
|
340 |
|
341 |
with gr.TabItem("🔒 Staking traders"):
|
342 |
with gr.Row():
|
343 |
gr.Markdown("# Trades conducted at the Pearl markets")
|
344 |
with gr.Row():
|
345 |
+
print("Calling plot staking with pearl")
|
346 |
staking_pearl_trades_by_week = plot_staking_trades_per_market_by_week(
|
347 |
trades_df=trades_df, market_creator="pearl"
|
348 |
)
|
data/all_trades_profitability.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d097ed0d81bd0fa9f2e301a1db66da1a5cb122f1ad8626327715dcaff127b83
|
3 |
+
size 3558217
|
data/unknown_traders.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ab41a7a35d8bf5c588b95849ec650e048578ddcbb18bc62df0e7a3c96902ea5
|
3 |
+
size 368142
|
scripts/cleaning_old_info.py
CHANGED
@@ -49,9 +49,6 @@ def clean_old_data_from_parquet_files(cutoff_date: str):
|
|
49 |
|
50 |
# generate again summary_profitability.parquet
|
51 |
try:
|
52 |
-
print("Summarising trades...")
|
53 |
-
summary_df = summary_analyse(all_trades)
|
54 |
-
|
55 |
# add staking labels
|
56 |
label_trades_by_staking(trades_df=all_trades, update=False)
|
57 |
|
@@ -59,6 +56,8 @@ def clean_old_data_from_parquet_files(cutoff_date: str):
|
|
59 |
all_trades.to_parquet(
|
60 |
DATA_DIR / "all_trades_profitability.parquet", index=False
|
61 |
)
|
|
|
|
|
62 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
63 |
except Exception as e:
|
64 |
print(f"Error generating summary and saving all trades profitability file {e}")
|
|
|
49 |
|
50 |
# generate again summary_profitability.parquet
|
51 |
try:
|
|
|
|
|
|
|
52 |
# add staking labels
|
53 |
label_trades_by_staking(trades_df=all_trades, update=False)
|
54 |
|
|
|
56 |
all_trades.to_parquet(
|
57 |
DATA_DIR / "all_trades_profitability.parquet", index=False
|
58 |
)
|
59 |
+
print("Summarising trades...")
|
60 |
+
summary_df = summary_analyse(all_trades)
|
61 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
62 |
except Exception as e:
|
63 |
print(f"Error generating summary and saving all trades profitability file {e}")
|
scripts/daily_data.py
CHANGED
@@ -5,6 +5,7 @@ from profitability import (
|
|
5 |
label_trades_by_staking,
|
6 |
)
|
7 |
import pandas as pd
|
|
|
8 |
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
@@ -21,6 +22,14 @@ def prepare_live_metrics(
|
|
21 |
# staking label
|
22 |
label_trades_by_staking(all_trades_df)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
# save into a separate file
|
25 |
all_trades_df.to_parquet(DATA_DIR / "daily_info.parquet", index=False)
|
26 |
|
|
|
5 |
label_trades_by_staking,
|
6 |
)
|
7 |
import pandas as pd
|
8 |
+
from nr_mech_calls import create_unknown_traders_df
|
9 |
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
|
|
|
22 |
# staking label
|
23 |
label_trades_by_staking(all_trades_df)
|
24 |
|
25 |
+
# create the unknown traders dataset
|
26 |
+
unknown_traders_df, all_trades_df = create_unknown_traders_df(
|
27 |
+
trades_df=all_trades_df
|
28 |
+
)
|
29 |
+
unknown_traders_df.to_parquet(
|
30 |
+
TMP_DIR / "unknown_daily_traders.parquet", index=False
|
31 |
+
)
|
32 |
+
|
33 |
# save into a separate file
|
34 |
all_trades_df.to_parquet(DATA_DIR / "daily_info.parquet", index=False)
|
35 |
|
scripts/{update_nr_mech_calls.py → nr_mech_calls.py}
RENAMED
@@ -1,5 +1,5 @@
|
|
1 |
import pandas as pd
|
2 |
-
from
|
3 |
from tqdm import tqdm
|
4 |
|
5 |
|
@@ -12,6 +12,16 @@ def update_roi(row: pd.DataFrame) -> float:
|
|
12 |
return new_value
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def update_trade_nr_mech_calls(non_agents: bool = False):
|
16 |
try:
|
17 |
all_trades_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
@@ -51,10 +61,19 @@ def update_trade_nr_mech_calls(non_agents: bool = False):
|
|
51 |
|
52 |
# saving
|
53 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
54 |
-
print("Summarising trades...")
|
55 |
-
summary_df = summary_analyse(all_trades_df)
|
56 |
-
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
57 |
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
-
update_trade_nr_mech_calls(non_agents=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
from utils import DATA_DIR, DEFAULT_MECH_FEE
|
3 |
from tqdm import tqdm
|
4 |
|
5 |
|
|
|
12 |
return new_value
|
13 |
|
14 |
|
15 |
+
def create_unknown_traders_df(trades_df: pd.DataFrame) -> pd.DataFrame:
|
16 |
+
"""filter trades coming from non-Olas traders that are placing no mech calls"""
|
17 |
+
no_mech_calls_mask = (trades_df["staking"] == "non_Olas") & (
|
18 |
+
trades_df["num_mech_calls"] == 0
|
19 |
+
)
|
20 |
+
no_mech_calls_df = trades_df.loc[no_mech_calls_mask]
|
21 |
+
trades_df = trades_df.loc[~no_mech_calls_mask]
|
22 |
+
return no_mech_calls_df, trades_df
|
23 |
+
|
24 |
+
|
25 |
def update_trade_nr_mech_calls(non_agents: bool = False):
|
26 |
try:
|
27 |
all_trades_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
|
|
61 |
|
62 |
# saving
|
63 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
64 |
+
# print("Summarising trades...")
|
65 |
+
# summary_df = summary_analyse(all_trades_df)
|
66 |
+
# summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
67 |
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
# update_trade_nr_mech_calls(non_agents=True)
|
71 |
+
trades_df = pd.read_parquet(DATA_DIR / "all_trades_profitability.parquet")
|
72 |
+
print("before filtering")
|
73 |
+
print(trades_df.staking.value_counts())
|
74 |
+
unknown_df, trades_df = create_unknown_traders_df(trades_df=trades_df)
|
75 |
+
print("after filtering")
|
76 |
+
print(trades_df.staking.value_counts())
|
77 |
+
print("saving unknown traders")
|
78 |
+
unknown_df.to_parquet(DATA_DIR / "unknown_traders.parquet", index=False)
|
79 |
+
trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
scripts/profitability.py
CHANGED
@@ -32,18 +32,20 @@ from get_mech_info import (
|
|
32 |
update_tools_parquet,
|
33 |
update_all_trades_parquet,
|
34 |
)
|
35 |
-
from utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
from staking import label_trades_by_staking
|
|
|
37 |
|
38 |
DUST_THRESHOLD = 10000000000000
|
39 |
INVALID_ANSWER = -1
|
40 |
-
DEFAULT_FROM_DATE = "1970-01-01T00:00:00"
|
41 |
-
DEFAULT_TO_DATE = "2038-01-19T03:14:07"
|
42 |
-
|
43 |
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
|
44 |
-
|
45 |
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
|
46 |
-
DEFAULT_MECH_FEE = 0.01
|
47 |
DUST_THRESHOLD = 10000000000000
|
48 |
|
49 |
|
@@ -423,14 +425,6 @@ def run_profitability_analysis(
|
|
423 |
# debugging purposes
|
424 |
all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet", index=False)
|
425 |
|
426 |
-
# filter trades coming from non-Olas traders that are placing no mech calls
|
427 |
-
no_mech_calls_mask = (all_trades_df["staking"] == "non_Olas") & (
|
428 |
-
all_trades_df.loc["num_mech_calls"] == 0
|
429 |
-
)
|
430 |
-
no_mech_calls_df = all_trades_df.loc[no_mech_calls_mask]
|
431 |
-
no_mech_calls_df.to_parquet(TMP_DIR / "no_mech_calls_trades.parquet", index=False)
|
432 |
-
all_trades_df = all_trades_df.loc[~no_mech_calls_mask]
|
433 |
-
|
434 |
# filter invalid markets. Condition: "is_invalid" is True
|
435 |
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
|
436 |
if len(invalid_trades) == 0:
|
@@ -452,15 +446,21 @@ def run_profitability_analysis(
|
|
452 |
|
453 |
all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]
|
454 |
|
455 |
-
# summarize profitability df
|
456 |
-
print("Summarising trades...")
|
457 |
-
summary_df = summary_analyse(all_trades_df)
|
458 |
-
|
459 |
# add staking labels
|
460 |
label_trades_by_staking(trades_df=all_trades_df)
|
461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
# save to parquet
|
463 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
|
|
|
|
|
|
|
|
464 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
465 |
|
466 |
print("Done!")
|
|
|
32 |
update_tools_parquet,
|
33 |
update_all_trades_parquet,
|
34 |
)
|
35 |
+
from utils import (
|
36 |
+
wei_to_unit,
|
37 |
+
convert_hex_to_int,
|
38 |
+
JSON_DATA_DIR,
|
39 |
+
DATA_DIR,
|
40 |
+
DEFAULT_MECH_FEE,
|
41 |
+
)
|
42 |
from staking import label_trades_by_staking
|
43 |
+
from nr_mech_calls import create_unknown_traders_df
|
44 |
|
45 |
DUST_THRESHOLD = 10000000000000
|
46 |
INVALID_ANSWER = -1
|
|
|
|
|
|
|
47 |
DEFAULT_60_DAYS_AGO_TIMESTAMP = (DATETIME_60_DAYS_AGO).timestamp()
|
|
|
48 |
WXDAI_CONTRACT_ADDRESS = "0xe91D153E0b41518A2Ce8Dd3D7944Fa863463a97d"
|
|
|
49 |
DUST_THRESHOLD = 10000000000000
|
50 |
|
51 |
|
|
|
425 |
# debugging purposes
|
426 |
all_trades_df.to_parquet(JSON_DATA_DIR / "all_trades_df.parquet", index=False)
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
# filter invalid markets. Condition: "is_invalid" is True
|
429 |
invalid_trades = all_trades_df.loc[all_trades_df["is_invalid"] == True]
|
430 |
if len(invalid_trades) == 0:
|
|
|
446 |
|
447 |
all_trades_df = all_trades_df.loc[all_trades_df["is_invalid"] == False]
|
448 |
|
|
|
|
|
|
|
|
|
449 |
# add staking labels
|
450 |
label_trades_by_staking(trades_df=all_trades_df)
|
451 |
|
452 |
+
# create the unknown traders dataset
|
453 |
+
unknown_traders_df, all_trades_df = create_unknown_traders_df(
|
454 |
+
trades_df=all_trades_df
|
455 |
+
)
|
456 |
+
unknown_traders_df.to_parquet(DATA_DIR / "unknown_traders.parquet", index=False)
|
457 |
+
|
458 |
# save to parquet
|
459 |
all_trades_df.to_parquet(DATA_DIR / "all_trades_profitability.parquet", index=False)
|
460 |
+
|
461 |
+
# summarize profitability df
|
462 |
+
print("Summarising trades...")
|
463 |
+
summary_df = summary_analyse(all_trades_df)
|
464 |
summary_df.to_parquet(DATA_DIR / "summary_profitability.parquet", index=False)
|
465 |
|
466 |
print("Done!")
|
scripts/pull_data.py
CHANGED
@@ -128,7 +128,7 @@ def only_new_weekly_analysis():
|
|
128 |
|
129 |
save_historical_data()
|
130 |
|
131 |
-
clean_old_data_from_parquet_files("2024-10-
|
132 |
|
133 |
compute_tools_accuracy()
|
134 |
|
|
|
128 |
|
129 |
save_historical_data()
|
130 |
|
131 |
+
clean_old_data_from_parquet_files("2024-10-14")
|
132 |
|
133 |
compute_tools_accuracy()
|
134 |
|
scripts/staking.py
CHANGED
@@ -173,7 +173,7 @@ def get_trader_address_staking(trader_address: str, service_map: dict) -> str:
|
|
173 |
return check_owner_staking_contract(owner_address=owner)
|
174 |
|
175 |
|
176 |
-
def label_trades_by_staking(trades_df: pd.DataFrame, start: int = None) ->
|
177 |
with open(DATA_DIR / "service_map.pkl", "rb") as f:
|
178 |
service_map = pickle.load(f)
|
179 |
# get the last service id
|
|
|
173 |
return check_owner_staking_contract(owner_address=owner)
|
174 |
|
175 |
|
176 |
+
def label_trades_by_staking(trades_df: pd.DataFrame, start: int = None) -> None:
|
177 |
with open(DATA_DIR / "service_map.pkl", "rb") as f:
|
178 |
service_map = pickle.load(f)
|
179 |
# get the last service id
|
scripts/utils.py
CHANGED
@@ -11,6 +11,7 @@ from pathlib import Path
|
|
11 |
from enum import Enum
|
12 |
from json.decoder import JSONDecodeError
|
13 |
|
|
|
14 |
REDUCE_FACTOR = 0.25
|
15 |
SLEEP = 0.5
|
16 |
REQUEST_ID_FIELD = "request_id"
|
|
|
11 |
from enum import Enum
|
12 |
from json.decoder import JSONDecodeError
|
13 |
|
14 |
+
DEFAULT_MECH_FEE = 0.01
|
15 |
REDUCE_FACTOR = 0.25
|
16 |
SLEEP = 0.5
|
17 |
REQUEST_ID_FIELD = "request_id"
|
tabs/staking.py
CHANGED
@@ -39,8 +39,6 @@ def plot_staking_trades_per_market_by_week(
|
|
39 |
all_filtered_trades = all_filtered_trades.loc[
|
40 |
all_filtered_trades["market_creator"] == market_creator
|
41 |
]
|
42 |
-
print(f"Checking values for market creator={market_creator}")
|
43 |
-
print(all_filtered_trades.staking.value_counts())
|
44 |
if market_creator != "all":
|
45 |
if market_creator == "pearl":
|
46 |
# remove the staking data from quickstart
|
|
|
39 |
all_filtered_trades = all_filtered_trades.loc[
|
40 |
all_filtered_trades["market_creator"] == market_creator
|
41 |
]
|
|
|
|
|
42 |
if market_creator != "all":
|
43 |
if market_creator == "pearl":
|
44 |
# remove the staking data from quickstart
|
tabs/trades.py
CHANGED
@@ -197,7 +197,13 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
197 |
# Process both Olas and non-Olas traces for each market together
|
198 |
for market in ["pearl", "quickstart", "all"]:
|
199 |
market_data = trades[trades["market_creator"] == market]
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
# First add 'Olas' trace
|
202 |
olas_data = market_data[market_data["staking_type"] == "Olas"]
|
203 |
olas_trace = go.Bar(
|
@@ -217,7 +223,7 @@ def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.
|
|
217 |
name=f"{market}-non_Olas",
|
218 |
marker_color=market_darker_colors[market],
|
219 |
offsetgroup=market, # Keep the market grouping
|
220 |
-
base=
|
221 |
showlegend=True,
|
222 |
)
|
223 |
|
|
|
197 |
# Process both Olas and non-Olas traces for each market together
|
198 |
for market in ["pearl", "quickstart", "all"]:
|
199 |
market_data = trades[trades["market_creator"] == market]
|
200 |
+
# Create a dictionary to store the Olas values for each week
|
201 |
+
olas_values = dict(
|
202 |
+
zip(
|
203 |
+
market_data[market_data["staking_type"] == "Olas"]["month_year_week"],
|
204 |
+
market_data[market_data["staking_type"] == "Olas"]["trades"],
|
205 |
+
)
|
206 |
+
)
|
207 |
# First add 'Olas' trace
|
208 |
olas_data = market_data[market_data["staking_type"] == "Olas"]
|
209 |
olas_trace = go.Bar(
|
|
|
223 |
name=f"{market}-non_Olas",
|
224 |
marker_color=market_darker_colors[market],
|
225 |
offsetgroup=market, # Keep the market grouping
|
226 |
+
base=[olas_values.get(x, 0) for x in non_Olas_data["month_year_week"]],
|
227 |
showlegend=True,
|
228 |
)
|
229 |
|