leaderboard / src /backend /model_operations.py
Miaoran000's picture
minor update for new models; postprocessing for md format
298d825
raw
history blame
24.3 kB
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json
import numpy as np
import pandas as pd
import spacy
import litellm
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForTokenClassification, AutoConfig
from peft import PeftModel
import torch
import cohere
from openai import OpenAI
import anthropic
import replicate
import google.generativeai as genai
from mistralai import Mistral
import src.backend.util as util
import src.envs as envs
litellm.set_verbose=True
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Load spacy model for word tokenization
nlp = spacy.load("en_core_web_sm")
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
class ModelLoadingException(Exception):
"""Exception raised for errors in loading a model.
Attributes:
model_id (str): The model identifier.
revision (str): The model revision.
"""
def __init__(self, model_id, revision, messages="Error initializing model"):
self.model_id = model_id
self.revision = revision
super().__init__(f"{messages} id={model_id} revision={revision}")
class SummaryGenerator:
"""A class to generate summaries using a causal language model.
Attributes:
model (str): huggingface/{model_id}
api_base (str): https://api-inference.huggingface.co/models/{model_id}
summaries_df (DataFrame): DataFrame to store generated summaries.
revision (str): Model revision.
avg_length (float): Average length of summaries.
answer_rate (float): Rate of non-empty summaries.
"""
def __init__(self, model_id, revision, device):
"""
Initializes the SummaryGenerator with a model.
Args:
model_id (str): Identifier for the model.
revision (str): Revision of the model.
"""
self.model_id = model_id
self.model = f"huggingface/{model_id}"
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
self.summaries_df = pd.DataFrame()
self.revision = revision
self.device = device
self.avg_length = None
self.answer_rate = None
self.exceptions = None
self.local_model = None
self.local_pipeline = None
def generate_summaries(self, df, save_path=None):
"""Generate summaries for a given DataFrame of source docs.
Args:
df (DataFrame): DataFrame containing source docs.
Returns:
summaries_df (DataFrame): Generated summaries by the model.
"""
exceptions = []
if (save_path is not None) and os.path.exists(save_path):
self.summaries_df = pd.read_csv(save_path)
print(f'Loaded generated summaries from {save_path}')
else:
source, summary, dataset = [], [], []
print(f"Total: {df.shape[0]}")
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
_source = row['text']
_dataset = row['dataset']
system_prompt = envs.SYSTEM_PROMPT
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
_summary = None
while not _summary:
try:
_summary = self.generate_summary(system_prompt, user_prompt)
# print(f"Finish index {index}")
break
except Exception as e:
if 'Rate limit reached' in str(e):
wait_time = 300
current_time = datetime.now().strftime('%H:%M:%S')
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
time.sleep(wait_time)
elif 'is currently loading' in str(e):
wait_time = 200
print(f"Model is loading, wait for {wait_time}")
time.sleep(wait_time)
elif '429' in str(e): # for gemini models
wait_time = 60
print(f"Quota has reached, wait for {wait_time}")
time.sleep(wait_time)
else:
print(f"Error at index {index}: {e}")
_summary = ""
exceptions.append(index)
break
summary.append(_summary)
source.append(_source)
dataset.append(_dataset)
# Sleep to prevent hitting rate limits too frequently
time.sleep(1)
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
columns=["source", "summary", "dataset"])
if save_path is not None:
print(f'Save summaries to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.summaries_df.to_csv(fpath)
self.exceptions = exceptions
self._compute_avg_length()
self._compute_answer_rate()
return self.summaries_df
def generate_summary(self, system_prompt: str, user_prompt: str):
# Using Together AI API
using_together_api = False
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', 'qwen', 'zero-one-ai'] #, 'mistralai'
using_replicate_api = False
replicate_api_models = ['snowflake', 'llama-3.1-405b']
using_pipeline = False
pipeline_models = ['llama-3.1', 'phi-3-mini','falcon-7b', 'phi-3.5', 'mistral-nemo']
for replicate_api_model in replicate_api_models:
if replicate_api_model in self.model_id.lower():
using_replicate_api = True
break
if not using_replicate_api:
for together_ai_api_model in together_ai_api_models:
if together_ai_api_model in self.model_id.lower():
using_together_api = True
break
if not using_replicate_api and not using_together_api:
for pipeline_model in pipeline_models:
if pipeline_model in self.model_id.lower():
using_pipeline = True
break
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
if using_together_api:
# print('using together api')
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
suffix = "chat/completions"
url = f"https://api.together.xyz/v1/{suffix}"
payload = {
"model": self.model_id,
'max_new_tokens': 250,
"temperature": 0.0,
}
payload['messages'] = [{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}]
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers)
print(response)
try:
result = json.loads(response.text)
# print(result)
result = result["choices"][0]
if 'message' in result:
result = result["message"]["content"].strip()
else:
result = result["text"]
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
result = result_candidates[0]
# print(result)
except:
# print(response)
result = ''
print(result)
return result
# Using OpenAI API
elif 'gpt' in self.model_id.lower():
client = OpenAI()
response = client.chat.completions.create(
model=self.model_id.replace('openai/',''),
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
temperature=0.0,
max_tokens=250,
)
# print(response)
result = response.choices[0].message.content
print(result)
return result
# Using Google AI API for Gemini models
elif 'gemini' in self.model_id.lower():
genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
generation_config = {
"temperature": 0,
"top_p": 0.95, # cannot change
"top_k": 0,
"max_output_tokens": 250,
# "response_mime_type": "application/json",
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(model_name=self.model_id.lower().split('google/')[-1],
generation_config=generation_config,
system_instruction=system_prompt,
safety_settings=safety_settings)
# print(model)
convo = model.start_chat(history=[])
convo.send_message(user_prompt)
# print(convo.last)
result = convo.last.text
print(result)
return result
elif using_replicate_api:
print("using replicate")
if 'snowflake' in self.model_id.lower():
input = {
"prompt": user_prompt,
"temperature": 0,
"max_new_tokens": 250,
"stop_sequences": "<|im_end|>",
"prompt_template": f"<|im_start|>system\n{system_prompt}<|im_end|>\n" + "<|im_start|>user\n{prompt}<|im_end|>\n\n<|im_start|>assistant\n",
}
else:
input = {
"prompt": user_prompt,
"system_prompt": system_prompt,
"temperature": 0,
"max_new_tokens": 250
}
response = replicate.run(
self.model_id,
input=input
)
# print(response)
if isinstance(response, list):
response = ''.join(response)
# print(response)
# print()
print(response)
return response
elif 'claude' in self.model_id.lower(): # using anthropic api
client = anthropic.Anthropic()
message = client.messages.create(
model=self.model_id.split('/')[-1],
max_tokens=250,
temperature=0,
system=system_prompt,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": user_prompt
}
]
}
]
)
result = message.content[0].text
print(result)
return result
elif 'command-r' in self.model_id.lower():
co = cohere.Client(os.getenv('COHERE_API_TOKEN'))
response = co.chat(
chat_history=[
{"role": "SYSTEM", "message": system_prompt},
],
message=user_prompt,
)
result = response.text
print(result)
return result
elif 'mistral-large' in self.model_id.lower():
api_key = os.environ["MISTRAL_API_KEY"]
client = Mistral(api_key=api_key)
messages = [
{
"role":"system",
"content":system_prompt
},
{
"role":"user",
"content":user_prompt
}
]
# No streaming
chat_response = client.chat.complete(
model=self.model_id,
messages=messages,
)
result = chat_response.choices[0].message.content
print(result)
return result
# Using HF API or download checkpoints
elif self.local_model is None and self.local_pipeline is None:
# try: # try use HuggingFace API
# print('** using huggingface api')
# response = litellm.completion(
# model=self.model,
# messages=[{"role": "system", "content": system_prompt},
# {"role": "user", "content": user_prompt}],
# temperature=0.0,
# max_tokens=250,
# api_base=self.api_base,
# )
# result = response['choices'][0]['message']['content']
# result = result.split('<|im_end|>')[0]
# print(result)
# return result
# except Exception as e:
# if 'Rate limit reached' in str(e) :
# wait_time = 300
# current_time = datetime.now().strftime('%H:%M:%S')
# print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
# time.sleep(wait_time)
# else:
if using_pipeline:
self.local_pipeline = pipeline(
"text-generation",
model=self.model_id,
tokenizer=AutoTokenizer.from_pretrained(self.model_id),
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
trust_remote_code=True
)
else:
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" if 'openelm' in self.model_id.lower() else self.model_id, trust_remote_code=True)
print("Tokenizer loaded")
if 'jamba' in self.model_id.lower():
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
use_mamba_kernels=False)
else:
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
# print(self.local_model.device)
print("Local model loaded")
# Using local model/pipeline
if self.local_pipeline:
print('Using Transformers pipeline')
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
outputs = self.local_pipeline(
messages,
max_new_tokens=250,
# return_full_text=False,
do_sample=False
)
result = outputs[0]["generated_text"][-1]['content']
print(result)
return result
elif self.local_model: # cannot call API. using local model / pipeline
print('Using local model')
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
messages=[
# gemma-1.1, mistral-7b does not accept system role
{"role": "user", "content": system_prompt + ' ' + user_prompt}
]
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
elif 'phi-2' in self.model_id.lower():
prompt = system_prompt + '\n' + user_prompt
elif 'intel' in self.model_id.lower():
prompt = f"### System:\n{system_prompt}\n### User:\n{user_prompt}\n### Assistant:\n"
else:
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
# print(prompt)
# print('-'*50)
input_ids = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
if 'glm' in self.model_id.lower():
outputs = outputs[:, input_ids['input_ids'].shape[1]:]
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if 'gemma-2' in self.model_id.lower():
result = result.split(user_prompt + '\nmodel')[-1].strip()
elif 'intel' in self.model_id.lower():
result = result.split("### Assistant:\n")[-1]
elif 'jamba' in self.model_id.lower():
result = result.split(messages[-1]['content'])[1].strip()
else:
# print(prompt)
# print('-'*50)
result = result.replace(prompt.strip(), '')
print(result)
return result
def _compute_avg_length(self):
"""
Compute the average length of non-empty summaries using SpaCy.
"""
total_word_count = 0
total_count = 0
for summary in self.summaries_df['summary']:
if util.is_summary_valid(summary):
doc = nlp(summary)
words = [token.text for token in doc if token.is_alpha]
total_word_count += len(words)
total_count += 1
self.avg_length = 0 if total_count == 0 else total_word_count / total_count
def _compute_answer_rate(self):
"""
Compute the rate of non-empty summaries.
"""
valid_count = sum(1 for summary in self.summaries_df['summary']
if util.is_summary_valid(summary))
total_count = len(self.summaries_df)
self.answer_rate = 0 if total_count == 0 else valid_count / total_count
class EvaluationModel:
"""A class to evaluate generated summaries.
Attributes:
model (CrossEncoder): The evaluation model.
scores (list): List of evaluation scores.
accuracy (float): Accuracy of the summaries.
hallucination_rate (float): Rate of hallucination in summaries.
"""
def __init__(self, model_path, device):
"""
Initializes the EvaluationModel with a CrossEncoder model.
Args:
model_path (str): Path to the CrossEncoder model.
"""
config = AutoConfig.from_pretrained('google/flan-t5-large')
self.model = AutoModelForTokenClassification.from_pretrained(model_path, config=config)
self.device = device
self.model.to(self.device)
self.scores = []
self.factual_consistency_rate = None
self.hallucination_rate = None
def predict(self, text_pairs):
"""Load LoRA adapters of HHEM and make predictions
All HHEM 2.1 settings, e.g., prompt template, are hardcoded in this function.
Args:
text_pairs: list of tuples, each tuple contains two strings (premise, hypothesis)
checkpoint: model ID on Hugging Face
"""
prompt = "<pad> Determine if the hypothesis is true given the premise?\n\nPremise: {text1}\n\nHypothesis: {text2}"
tokenizer = AutoTokenizer.from_pretrained('t5-base')
inputs = tokenizer(
[prompt.format(text1=pair[0], text2=pair[1]) for pair in text_pairs],
return_tensors='pt', padding='longest').to(self.device)
self.model.eval()
with torch.no_grad():
output = self.model(**inputs)
logits = output.logits
logits = logits[:,0,:] # get the logits on the first token
logits = torch.softmax(logits, dim=-1)
scores = [round(x, 5) for x in logits[:, 1].tolist()] # list of float
return scores
def evaluate_hallucination(self, summaries_df):
"""
Evaluate the hallucination rate in summaries. Updates the 'scores' attribute
of the instance with the computed scores.
Args:
summaries_df (DataFrame): DataFrame containing source docs and summaries.
Returns:
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
"""
hem_scores = []
sources = []
summaries = []
source_summary_pairs = util.create_pairs(summaries_df)
for doc, summary in source_summary_pairs:
if util.is_summary_valid(summary):
try:
summary = util.normalize_summary(summary)
score = self.predict([(doc, summary)])[0]
hem_scores.append(score)
sources.append(doc)
summaries.append(summary)
except Exception as e:
logging.error(f"Error while running HEM: {e}")
raise
self.scores = hem_scores
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
return hem_scores, eval_results
def compute_factual_consistency_rate(self, threshold=0.5):
"""
Compute the factual consistency rate of the evaluated summaries based on
the previously calculated scores. This method relies on the 'scores'
attribute being populated, typically via the 'evaluate_hallucination' method.
Returns:
float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
and 'hallucination_rate' attributes of the instance.
Raises:
ValueError: If scores have not been calculated prior to calling this method.
"""
if not self.scores:
error_msg = "Scores not calculated. Call evaluate_hallucination() first."
logging.error(error_msg)
raise ValueError(error_msg)
# Use threshold of 0.5 to compute factual_consistency_rate
num_above_threshold = sum(score >= threshold for score in self.scores)
num_total = len(self.scores)
if not num_total:
raise ValueError("No scores available to compute factual consistency rate.")
self.factual_consistency_rate = (num_above_threshold / num_total) * 100
self.hallucination_rate = 100 - self.factual_consistency_rate
return self.factual_consistency_rate