veetla commited on
Commit
976e214
·
1 Parent(s): 6cc6cc2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -47
app.py CHANGED
@@ -1,52 +1,17 @@
1
- """Deploying AI Voice Chatbot Gradio App."""
2
- from gradio import Audio, Interface, Textbox
3
 
4
- from utils import (TextGenerationPipeline, from_en_translation,
5
- html_audio_autoplay, stt, to_en_translation, tts,
6
- tts_to_bytesio)
7
 
8
- max_answer_length = 100
9
- desired_language = "de"
10
- response_generator_pipe = TextGenerationPipeline(max_length=max_answer_length)
11
 
 
 
12
 
13
- def main(audio: object):
14
- """Calls functions for deploying gradio app.
15
- It responds both verbally and in text
16
- by taking voice input from user.
17
- Args:
18
- audio (object): recorded speech of user
19
- Returns:
20
- tuple containing
21
- - user_speech_text (str) : recognized speech
22
- - bot_response_de (str) : translated answer of bot
23
- - bot_response_en (str) : bot's original answer
24
- - html (object) : autoplayer for bot's speech
25
- """
26
- user_speech_text = stt(audio, desired_language)
27
- tranlated_text = to_en_translation(user_speech_text, desired_language)
28
- bot_response_en = response_generator_pipe(tranlated_text)
29
- bot_response_de = from_en_translation(bot_response_en, desired_language)
30
- bot_voice = tts(bot_response_de, desired_language)
31
- bot_voice_bytes = tts_to_bytesio(bot_voice)
32
- html = html_audio_autoplay(bot_voice_bytes)
33
- return user_speech_text, bot_response_de, bot_response_en, html
34
 
35
-
36
- Interface(
37
- fn=main,
38
- inputs=[
39
- Audio(
40
- source="microphone",
41
- type="filepath",
42
- ),
43
- ],
44
- outputs=[
45
- Textbox(label="You said: "),
46
- Textbox(label="AI said: "),
47
- Textbox(label="AI said (English): "),
48
- "html",
49
- ],
50
- live=True,
51
- allow_flagging="never",
52
- ).launch()
 
1
+ import gradio as gr
 
2
 
3
+ from transformers import pipeline
 
 
4
 
5
+ pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
 
 
6
 
7
+ def predict(text):
8
+ return pipe(text)[0]["translation_text"]
9
 
10
+ iface = gr.Interface(
11
+ fn=predict,
12
+ inputs='text',
13
+ outputs='text',
14
+ examples=[["Hello! My name is Omar"]]
15
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ iface.launch()