File size: 21,406 Bytes
5bc01b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760a850
5bc01b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#!/usr/bin/env python
#############################################################################
#
# This is the bulk of the logic for the gradio demo. You use it for whatever 
# you want. Credit would be nice but w/e
#
# You can also run it on an image from the cli
#
# TODO:
#
# 1. rework the classes that just wrap Dict and List to extend them
# 2. cleanup all the to_dict madness
# 3. convert the print calls to use the logging
# 4. add a proper creative commons license 
# 5. cleanup string constants
# 6. replace custom code with libraries like for OBJ
# 
#############################################################################

import cv2
import json
import logging
import mediapipe as mp
import numpy as np
import os
import sys
import torch

from mediapipe.framework.formats import landmark_pb2
from mediapipe.python.solutions.drawing_utils import _normalized_to_pixel_coordinates
from PIL import Image, ImageDraw
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from typing import List, Mapping, Optional, Tuple, Union, Dict, Type

from utils import colorize
from quads import QUADS

mp_face_mesh = mp.solutions.face_mesh
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles

NumpyImage = Type[np.ndarray]

DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

HF_HACK = True

class Point3:
    def __init__(self, values:List[float]=3*[0] ):
        self.values = values

    @property
    def x(self):
        return self.values[0]

    @property
    def y(self):
        return self.values[1]

    @property
    def z(self):
        return self.values[2]

    def to_dict(self):
        return {'x':self.x,'y':self.y,'z':self.z}


class TextureCoordinate:
    def __init__(self, values:List[float]=2*[0] ):
        self.values = values

    @property
    def u(self):
        return self.values[0]

    @property
    def v(self):
        return self.values[1]

    def to_dict(self):
        return {'u':self.u,'v':self.v}

class PixelCoordinate:
    def __init__(self, values:List[int]=2*[0] ):
        self.values = values

    @property
    def x(self):
        return self.values[0]

    @property
    def y(self):
        return self.values[1]

    def to_dict(self):
        return {'x':self.x,'y':self.y}

class DepthMap:
    MEDIA_PIPE = 'mediapipe'
    def __init__(self, values:Dict[str,float]={'og':0} ):
        self.values = values

    def to_dict(self):
        return self.values

class DepthMapping:
    def __init__(self, weight:float=1, lo:float=+np.inf, hi:float=-np.inf, toLo:float=0, toHi:float=1):
        self.weight = weight
        self.lo = lo
        self.hi = hi
        self.toLo = toLo
        self.toHi = toHi
        self.diff = 1
        self.toDiff = 1
        self.update()

    def reset(self):
        self.lo = +np.inf
        self.hi = -np.inf

    def track(self,value):
        self.lo = min(self.lo,value)
        self.hi = max(self.hi,value)

    def update(self):
        self.diff = self.hi - self.lo
        self.toDiff = self.toHi - self.toLo
        return self

    def translate(self,value):
        if not self.diff == 0:
            value = ( value - self.lo ) / self.diff
            value = self.toLo + value * self.toDiff
        value = value * self.weight
        return value

    def to_dict(self):
        return {
            'weight' : self.weight,
            'lo'     : self.lo,
            'hi'     : self.hi,
            'toLo'   : self.toLo,
            'toHi'   : self.toHi,
            'diff'   : self.diff,
            'toDiff' : self.toDiff,
        }


class WeightMap:
    def __init__(self, values:Dict[str,DepthMapping]=None):
        if values is None:
            self.values = {DepthMap.MEDIA_PIPE:DepthMapping()} 
        else:
            self.values = values

    def set(self,key:str,depthMapping:DepthMapping):
        self.values[key] = depthMapping

    def totally(self,name:str):
        if not name in self.values:
            raise Exception( f'no weight for {k} in {self.to_dict()}' )
        for depthMapping in self.values.values():
            depthMapping.weight = 0
        self.values[ name ].weight = 1

    def saveWeights(self)->Dict[str,float]:
        return {k:v.weight for k,v in self.values.items()}

    def loadWeights(self,weights:Dict[str,float]):
        for k,weight in weights.items():
            if k in self.values:
                self.values[ k ].weight = weight
            else:
                raise Exception( f'no weight for {k} in {self.to_dict()}' )

    def to_dict(self):
        return {k:dm.to_dict() for k,dm in self.values.items()}
        return self.values

class MeshPoint:
    def __init__(self, 
        position:Point3 = Point3(),
        color:Point3 = Point3(),
        textureCoordinate:TextureCoordinate = TextureCoordinate(), 
        pixelCoordinate:PixelCoordinate = PixelCoordinate(), 
        depthMap:DepthMap = None,
    ):
        self.position = position
        self.color = color
        self.textureCoordinate = textureCoordinate
        self.pixelCoordinate = pixelCoordinate

        if depthMap is None:
            self.depthMap = DepthMap({DepthMap.MEDIA_PIPE:position.values[2]})
        else:
            self.depthMap = depthMap

    def to_dict(self):
        derp = {
            'position'          : self.position.to_dict(),
            'color'             : self.color.to_dict(),
            'textureCoordinate' : self.textureCoordinate.to_dict(),
            'pixelCoordinate'   : self.pixelCoordinate.to_dict(),
        }
        if not self.depthMap is None:
            derp[ 'depthMap' ] = self.depthMap.to_dict()
        return derp

    def weighDepth(self, weightMap:WeightMap = WeightMap()):
        total_sum = sum([dm.weight for dm in weightMap.values.values()])
        tmp = 0
        for key, depthMapping in weightMap.values.items():
            if key in self.depthMap.values:
                tmp = tmp + depthMapping.translate( self.depthMap.values[ key ] )
            else:
                raise Exception(f'{key} from weightMap not in depthMap')
        tmp = tmp / total_sum 
        #print( f'depthMap: {json.dumps(self.depthMap.to_dict())} -> {tmp}') # spam!!!
        self.position.values[2] = tmp 

    def mapLandMark(self, mediaMesh:'MediaMesh', landmark: landmark_pb2.NormalizedLandmark) -> 'MeshPoint':
        x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,mediaMesh.width,mediaMesh.height)

        #position = [landmark.x * mediaMesh.ratio, landmark.y, landmark.z]
        #position = [landmark.x * mediaMesh.ratio, landmark.y, landmark.z]
        position = [v * mediaMesh.scale[i] for i,v in enumerate([landmark.x, landmark.y, landmark.z])]

        self.position = Point3(position)

        #self.position = Point3([landmark.x * mediaMesh.ratio, landmark.y, landmark.z])
        self.color = Point3([value / 255 for value in mediaMesh.image[y,x]])
        self.textureCoordinate = TextureCoordinate([x/mediaMesh.width,1-y/mediaMesh.height] )
        self.pixelCoordinate = PixelCoordinate([x,y])
        self.depthMap = DepthMap({DepthMap.MEDIA_PIPE:self.position.z})
        return self

    def toObj(self, lines:List[str], hf_hack:bool=HF_HACK):
        lines.append( "v  " + " ".join(map(str, self.position.values + self.color.values)) )
        lines.append( "vt " + " ".join(map(str, self.textureCoordinate.values ) ) )

# IMPORTANT! MeshFace uses 1 based indices, not 0 based!!!!
class MeshFace:
    def __init__(self,indices:List[int]=None,normal:Point3=Point3()):
        self.indices = indices
        self.normal = normal

    def calculateNormal(self,meshPoints:List[MeshPoint]):
        if self.indices is None:
            raise Exception('indices is junk')
        if meshPoints is None:
            raise Exception('meshPoints is junk')
        if len(self.indices)<3:
            raise Exception('need at least 3 points')

        points = [meshPoints[index-1] for index in self.indices[:3]]
        npz = [np.array(point.position.values) for point in points]

        v1 = npz[1] - npz[0]
        v2 = npz[2] - npz[0]
        normal = np.cross(v1, v2)
        normal = normal / np.linalg.norm(normal)
        self.normal = Point3( normal.tolist() )

    def toObj(self, lines:List[str], index:int, hf_hack:bool=HF_HACK):
        lines.append( "vn " + " ".join([str(value) for value in self.normal.values]) )
        face_uv = "f " + " ".join([f'{vertex}/{vertex}/{index}' for vertex in self.indices])
        face_un = "f " + " ".join([str(vertex) for vertex in self.indices])
        if hf_hack:
            lines.append( f'#{face_uv}' )
            lines.append( f'{face_un}' )
        else:
            lines.append( face_uv )

class DepthSource:
    def __init__(self, name:str=None):
        self.name = name 
        self.mediaMesh = None
        self.depth:NumpyImage = None
        self.gray:NumpyImage = None

    def mapDepth(self, mediaMesh:'MediaMesh', depthMapping:DepthMapping=None) -> 'DepthSource':
        return self
    
    def _addDepth(self, mediaMesh:'MediaMesh', depthMapping:DepthMapping=None) -> 'DepthSource':
        self.gray = colorize(self.depth, cmap='gray_r')
        self.mediaMesh = mediaMesh

        for meshPoint in mediaMesh.points:
            depth = self.depth[meshPoint.pixelCoordinate.y,meshPoint.pixelCoordinate.x]
            #depth = -depth # lazy conversion from depth to position
            meshPoint.depthMap.values[ self.name ] = float( depth )

        mediaMesh.weightMap.set( self.name, self.createDepthMapping(depthMapping) )

        self.gray = mediaMesh.drawGrayMesh(self.name,True)
        return self

    # note: if depthMapping is passed in, the hi and lo will be reset
    def createDepthMapping(self,depthMapping:DepthMapping=None) -> DepthMapping:
        if depthMapping is None:
            depthMapping = DepthMapping()
        depthMapping.reset()
        if not self.depth is None:
            for meshPoint in self.mediaMesh.points:
                depth = self.depth[meshPoint.pixelCoordinate.y,meshPoint.pixelCoordinate.x]
                depthMapping.track(float(depth))
        return depthMapping.update()

class ZoeDepthSource( DepthSource ):
    NAME = 'zoe'

    def __init__(self):
        super().__init__(ZoeDepthSource.NAME)
        self.model = torch.hub.load('isl-org/ZoeDepth', "ZoeD_K", pretrained=True).to(DEVICE).eval()

    def mapDepth(self, mediaMesh:'MediaMesh', depthMapping:DepthMapping=None) -> 'DepthSource':
        self.depth = 1.-self.model.infer_pil(mediaMesh.image)
        return self._addDepth(mediaMesh, depthMapping)

class MidasDepthSource( DepthSource ):
    NAME = 'midas'

    def __init__(self):
        super().__init__(MidasDepthSource.NAME)
        self.feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
        self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

    def mapDepth(self, mediaMesh:'MediaMesh', depthMapping:DepthMapping=None) -> 'DepthSource':
        img = Image.fromarray(mediaMesh.image)

        encoding = self.feature_extractor(img, return_tensors="pt")
        with torch.no_grad():
           outputs = self.model(**encoding)
           predicted_depth = outputs.predicted_depth

        prediction = torch.nn.functional.interpolate(
            predicted_depth.unsqueeze(1),
            size=img.size[::-1],
            mode="bicubic",
            align_corners=False,
        ).squeeze()
        self.depth = prediction.cpu().numpy()
        return self._addDepth(mediaMesh, depthMapping)

#############################################################################
#
# A MediaMesh has:
#
# 1. an input image
# 2. the first landmark found
# 3. a MeshPoint for each point 
#
#
#
#############################################################################
class MediaMesh:
    LOG = logging.getLogger(__name__)
    COMBINED = 'combined'

    def __init__(self, scale:List[int]=[-1,-1,-1], weightMap:WeightMap = None, image:NumpyImage = None, annotated:NumpyImage = None, points:List[MeshPoint] = None):
        self.scale = scale
        if weightMap is None:
            self.weightMap = WeightMap()
        else:
            self.weightMap = weightMap
        self.image = image
        self.annotated = annotated
        self.points = points
        self.meshes = {}
        self.depthSources = {}

    # after this call, instance variables for image, annotated and points should be set
    def detect(self, image:NumpyImage, min_detection_confidence:float = .5) -> 'MediaMesh':
        self.image = image
        self.annotated = image.copy()
        self.points = None

        self.width  = image.shape[1]
        self.height = image.shape[0]
        self.ratio  = self.width / self.height

        self.scale[0] = self.ratio

        first = True # just do the first face for now

        with mp_face_mesh.FaceMesh(
            static_image_mode=True,
            max_num_faces=1,
            min_detection_confidence=min_detection_confidence) as face_mesh:

            results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
            if not results.multi_face_landmarks:
                raise Exception( 'no faces found' )

            for landmarks in results.multi_face_landmarks:
                if first:
                    self.points = self.mapLandMarks(landmarks)
                    first = False
                self.drawLandMarks(self.annotated, landmarks)
        
        self.gray = self.drawGrayMesh()
        self.weightMap.set( DepthMap.MEDIA_PIPE, self.createDepthMapping() )

        return self

    def drawLandMarks(self, image:NumpyImage, landmarks: landmark_pb2.NormalizedLandmarkList):
        drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)

        mp_drawing.draw_landmarks(
            image=image,
            landmark_list=landmarks,
            connections=mp_face_mesh.FACEMESH_TESSELATION,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing_styles
            .get_default_face_mesh_tesselation_style())
        mp_drawing.draw_landmarks(
            image=image,
            landmark_list=landmarks,
            connections=mp_face_mesh.FACEMESH_CONTOURS,
            landmark_drawing_spec=None,
            connection_drawing_spec=mp_drawing_styles
            .get_default_face_mesh_contours_style())

    def mapLandMarks(self, landmarks: landmark_pb2.NormalizedLandmarkList) -> List[MeshPoint]:
        points = []
        for landmark in landmarks.landmark:
            point = MeshPoint().mapLandMark(self, landmark)
            points.append( point )
        return self.centerPoints(points)

    def centerPoints(self,points:List[MeshPoint]=None) -> List[MeshPoint]:
        if points is None:
            points = self.points

        mins = [+np.inf] * 3
        maxs = [-np.inf] * 3

        for point in points:
            for dimension,value in enumerate( point.position.values ):
                mins[dimension] = min(mins[dimension],value)
                maxs[dimension] = max(maxs[dimension],value)

        mids = [(min_val + max_val) / 2 for min_val, max_val in zip(mins, maxs)]
        for point in points:
            point.position.values = [(val-mid) for val, mid in zip(point.position.values,mids)]

        print( f'mins: {mins}' )
        print( f'mids: {mids}' )
        print( f'maxs: {maxs}' )

        return points

    def createDepthMapping(self,depthMapping:DepthMapping=None) -> DepthMapping:
        if depthMapping is None:
            depthMapping = DepthMapping()
        for point in self.points:
            depthMapping.track(point.position.z)
        return depthMapping.update()

    def drawGrayMesh(self, source:str=DepthMap.MEDIA_PIPE, invert:bool=False):
        image = Image.new("RGB", (self.width, self.height), (88,13,33))
        draw = ImageDraw.Draw(image)

        minZ = np.inf
        maxZ = -np.inf

        depths = []

        for point in self.points:
            depth = point.depthMap.values[source]
            depths.append( depth )
            minZ = min( minZ, depth )
            maxZ = max( maxZ, depth )

        difZ = maxZ - minZ
        if 0 == difZ:
            difZ = 1

        depths = [(depth-minZ)/difZ for depth in depths]

        for quad in QUADS:
            points = [tuple(self.points[index-1].pixelCoordinate.values) for index in quad]
            colors = [tuple(3*[int(255*depths[index-1])]) for index in quad]
            color = int(np.average(colors))
            if invert:
                color = 255 - color
            draw.polygon(points, fill=tuple(3*[color]))
            #draw.polygon(points, fill=colors) # sadly this does not work

        return np.asarray(image)

    # the obj is based on the current weightMap
    def toObj(self, name:str='sweet', hf_hack:bool=HF_HACK):
        print( '-----------------------------------------------------------------------------' )

        obj = [f'o {name}Mesh']
        mtl = f'newmtl {name}Material\nmap_Kd {name}.png\n'

        c = '#' if hf_hack else ''
        obj.append( f'{c}mtllib {name}.mtl' )

        obj.append( f'##################################################################' )
        obj.append( f'# to bring into blender with uvs:' )
        obj.append( f'# put the following 2 lines into {name}.mtl uncommented' )
        obj.append( f'#newmtl {name}Material' )
        obj.append( f'#map_Kd {name}.png' )
        obj.append( f'# remove lines from this file starting with "f  "' )
        obj.append( f'# uncomment the lines that start with "#f "' )
        obj.append( f'##################################################################' )

        for key, depthMapping in self.weightMap.values.items():
            depthMapping.update()
            print( f'{name}.{key} -> {depthMapping.to_dict()}' )

        for point in self.points:
            point.weighDepth(self.weightMap)

        self.centerPoints()

        for point in self.points:
            point.toObj(obj,hf_hack)

        obj.append( f'usemtl {name}Material' )

        index = 0
        for quad in QUADS:
            index = 1 + index
            face = MeshFace(quad)
            face.calculateNormal(self.points)
            face.toObj(obj, index, hf_hack)  

        obj.append( f'##################################################################' )
        obj.append( f'# EOF' )
        obj.append( f'##################################################################' )

        print( '-----------------------------------------------------------------------------' )

        return obj,mtl

    def to_dict(self):
        return {
            'width'     : self.width,
            'height'    : self.height,
            'ratio'     : self.ratio,
            'weightMap' : {key: value.to_dict() for key, value in self.weightMap.values.items()},
            'points'    : [point.to_dict() for point in self.points]
        }

    # should be called after demoSetup and detect
    def singleSourceMesh(self,name:str, hf_hack:bool=HF_HACK):
        before = self.weightMap.saveWeights() # push
        self.weightMap.totally(name)
        obj,mtl = self.toObj(name)
        self.weightMap.loadWeights( before ) # pop
        return obj,mtl

    # should be called after demoSetup and detect
    def meshmerizing(self,hf_hack:bool=HF_HACK):
        for depthSource in self.depthSources:
            depthSource.mapDepth(self,self.weightMap.values[depthSource.name])

        obj,mtl = self.toObj(MediaMesh.COMBINED)
        self.meshes = {MediaMesh.COMBINED:(obj,mtl)}

        for source in self.depthSources:
            self.meshes[ source.name ] = (self.singleSourceMesh(source.name))

        self.meshes[DepthMap.MEDIA_PIPE] = (self.singleSourceMesh(DepthMap.MEDIA_PIPE))

        return self.meshes

    def demoSetup(self) -> 'MediaMesh':
        self.depthSources = [ ZoeDepthSource(), MidasDepthSource() ]

        for depthSource in self.depthSources:
            self.weightMap.set( depthSource.name, depthSource.createDepthMapping() )

        # observationally
        self.weightMap.values[ ZoeDepthSource.NAME   ].toHi   = 1.77
        self.weightMap.values[ MidasDepthSource.NAME ].toHi   = 2.55
        self.weightMap.values[ ZoeDepthSource.NAME   ].weight = 1.00
        self.weightMap.values[ MidasDepthSource.NAME ].weight = 0.22

        return self

    def main(self):
        if not 2 == len(sys.argv):
            raise Exception( 'usage: MediaMesh.py <image filename>' )
        mediaMesh = MediaMesh().demoSetup()
        mediaMesh.detect(cv2.imread( sys.argv[1] ) ) 

        for name,mesh in mediaMesh.meshmerizing().items():
            obj = mesh[0]
            mtl = mesh[1]
            with open(f"{name}.obj", "w") as file:
                file.write( '\n'.join(obj) )
            with open(f"{name}.mtl", "w") as file:
                file.write( mtl )

        cv2.imwrite( 'mesh.png', mediaMesh.annotated )
        cv2.imwrite( 'mpg.png',  mediaMesh.gray )
        for source in mediaMesh.depthSources:
            cv2.imwrite( f'{source.name}.png', source.gray )

        with open("mesh.json", "w") as file:
            json.dump(mediaMesh.to_dict(), file, indent=4)

if __name__ == "__main__":
    MediaMesh().main()

# EOF
#############################################################################